TY - CONF A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Churiaque, C. A1 - Sanchez-Amaya, J.M. T1 - High-power hybrid laser arc welding of thick materials with electromagnetic weld pool support N2 - In addition to the many advantages of deep penetration, increased welding speed and a low sensitivity to manufacturing tolerances such as gap and edge offset, the hybrid laser arc welding (HLAW) process is used increasingly in industrial applications such as shipbuilding or pipeline manufacturing. Nonetheless, thick-walled sheets with a wall thickness of 20 mm or more are still multi-pass welded using the arc welding process, due to increased process instability by increasing laser power. Welding at reduced speed, especially in a flat position, leads to an irregular formation of the root part such as dropping. The hydrostatic pressure exceeds the surface tension, which decreases with increasing seam width. In order to prevent gravity drop-outs, the use of a melt pool support is necessary. Usual weld pool supports such as ceramic or powder supports require time-consuming mechanical detachment. The electromagnetic weld pool support system, which is described in this study, operates without contact and based on generating Lorentz forces in the weld pool. An externally applied oscillating magnetic field induces eddy currents and generates an upward directed Lorentz force, which counteracts the hydrostatic pressure. This allows single-pass welds up to 30 mm by hybrid laser arc welding process with a 20-kW fibre laser. Moreover, it is favoured by the diminished welding speed the cooling rate which leads to an improvement of the mechanical-technological properties of the seams – the lower formation of martensite in the microstructure enables better Charpy impact toughness. The electromagnetic weld pool support extends the limitation of the laser hybrid welding process in the thick sheet area. By adapting the electromagnetic weld pool support to the laser and laser hybrid welding process, the application potential of these technologies for industrial implementation can be drastically increased. T2 - 23rd Technical Conference on Welding and Joining Technologies CY - Irun, Spain DA - 07.03.2023 KW - Laser hybrid welding KW - Thick-walled steel KW - Electromagnetic backing KW - High-power laser PY - 2023 AN - OPUS4-58613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Analysis of microstructure and mechanical properties of single-pass laser hybrid welded thick-walled steels up to 30 mm with contactless electromagnetic backing N2 - The study deals with the influence of the heat input on the thermal cycles, the microstructure and the mechanical properties for laser-hybrid welded steels of S355J2 with thicknesses up to 30 mm using a 20-kW high-power laser with contactless electromagnetic backing. The focus is on the change of the mechanical properties over the seam thickness. Therefore, the impact toughness and tensile strength were tested in different depths. Based on the experiments, a heat input of 1.3 kJ/mm - 1.6 kJ/mm, 2 kJ/mm - 2.4 kJ/mm and 3.7 kJ/mm were recommended when single-pass welding of 20 mm, 25 mm and 30 mm with a 20-kW laser in regard to the minimum requirements of the mechanical properties, respectively. Lower heat inputs led to undesired microstructure consisting of martensite, hardening and deteriorated impact toughness, where higher heat inputs led to grain-coarsening and even loss of impact strength due to the formation of retained-austenite on the grain boundaries. T2 - EMPOrIA 2023 - International Joint Conference CY - Aachen, Germany DA - 16.05.2023 KW - Laser hybrid welding KW - Electromagnetic backing KW - Thermal cycles KW - Charpy impact toughness KW - Thick-plate welding PY - 2023 AN - OPUS4-58614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ömer A1 - Kampffmeyer, D. A1 - Wolters, M. A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of shielding gas on filler wire mixing at laser hybrid welding of thick high strength steels N2 - The laser hybrid welding process offers many advantages during welding oft hick-walled steels, such as the increased penetration depth and, thus, reduced number of layers, reduced heat input and decreased distortion compared to arc-based welding processes. Especially, when welding high-strength steels (HSS), the reduced heat input plays an essential role. However, a major challenge when laser hybrid welding of thick-walled steels is the limited filler wire mixing over the entire seam thickness, which can lead to changed mechanical properties over the depth. To overcome this issue, the add of oxygen into the shielding gas and its influence on the filler wire mixing and finally to the mechanical properties were investigated within this work. Therefore, 20 mm thick S690QL steels were laser hybrid welded in a single-pass. A contactless electromagnetic backing was used to avoid sagging. The admixture of oxygen was performed by a gas mixer, where the oxygen content was varied between 0 % and 7.2 %. The experiments were also accompanied by laser beam welding tests in steel/glass configuration, where the melt pool geometry as well as the melt flow characteristics were captured by a high-speed camera. It can be concluded, that adding of 2 % to 4 % oxygen into the shielding gas had a positive effect on the filler wire mixing, were up to a depth of 18 mm elements of the filler wire could be observed. T2 - 19th Nordic Laser Material Processing Conference CY - Turku, Finland DA - 22.08.2023 KW - Laser hybrid welding KW - Electromagnetic backing KW - Shielding gas KW - Charpy impact toughness KW - Thick-plate welding KW - Filler wire mixing PY - 2023 AN - OPUS4-58615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of heat input on cooling rates and mechanical properties of laser hybrid welded thick structural steels N2 - The laser hybrid welding process offers many advantages such as the high penetration depth and high welding speed, and it is characterized by its low heat input compared to the arc-based welding processes, which makes the laser hybrid welding process as a suitable alternative process when welding thick-walled steels. However, there are some challenges when using laser hybrid welding process for thick steels. Due to the uneven cooling conditions and the inhomogeneous filler wire mixing, a typical laser hybrid weld can be divided into two different zones over the depth: the arc-dominated zone on the upper part and the laser-dominated zone in the root part. This leads to different mechanical properties in a laser hybrid welded joint. Due to the high cooling rates and the lack of filler wire in the laser-dominated zone, this area is more critical regarding the mechanical properties, especially the Charpy impact toughness. A low heat input can lead to undesired microstructure consisting of martensite, hardening and deteriorated impact toughness due to the high cooling rate, where higher heat inputs can lead to grain-coarsening and even loss of impact strength. This study deals with the influence of the welding speed and resulting heat input on the cooling rates, the microstructure and the mechanical properties of single-pass laser hybrid welded steels of S355J2 with thickness up to 30 mm. The experiments were performed with a 20-kW fibre laser system and a contactless electromagnetic weld backing on up to 30 mm thick steels in butt-joint configuration in 1G welding position. The cooling time was measured in three different locations near to fusion lines corresponding to different heights of the seam using a special configuration with pyrometers, collimators, and optical fibres. The test specimens for the Charpy impact testing and tensile testing were extracted in up to three different depths. Based on the experiments, a heat input of 1.3 kJ/mm - 1.6 kJ/mm, 2 kJ/mm - 2.4 kJ/mm and 3.7 kJ/mm were recommended when single-pass laser hybrid welding of 20 mm, 25 mm and 30 mm thick structural steels in regard to the minimum requirements of the mechanical properties, respectively. The optical measurement of the cooling times in different depths could be carried out reproducibly. T2 - Advances in Welding and Metal Additive Manufacturing Technologies 2023 CY - Istanbul, Türkiye DA - 30.10.2023 KW - Laser hybrid welding KW - Electromagnetic backing KW - Charpy impact toughness KW - Thick-plate welding KW - Thermal cycles PY - 2023 AN - OPUS4-58942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Shakeel, Yusra A1 - Olbricht, Jürgen A1 - Aversa, Rossella A1 - Skrotzki, Birgit T1 - NFDI-MatWerk PP18 / IUC02 Reference Data: Creep Data of a single crystalline Ni-Base Alloy N2 - Reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) of the consortium Materials Science and Engineering (MatWerk) of National Research Data Infrastructure (NFDI) aims to develop, together with BAM and other Participant Projects (PP), a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for identifying reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - All-Hands-on-Deck congress from the NFDI-MatWerk CY - Siegburg, Germany DA - 08.03.2023 KW - Referenzdaten KW - Reference data KW - Creep KW - Syngle Crystal alloy KW - Metadata schema PY - 2023 AN - OPUS4-57146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Hammerschmidt, T. A1 - Stotzka, R. A1 - Forti, M. A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit A1 - Lenze, A. A1 - Gedsun, A. A1 - Hickel, Tilmann A1 - Tsybenko, H. A1 - Chmielowski, M. A1 - Hunke, S. A1 - Shakeel, Y. T1 - Demonstration of the Infrastructure Use Case 02: Framework for curation and distribution of reference datasets N2 - In our current view, reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) aims to develop a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for the creation and distribution of reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - NFDI-MatWerk Conference CY - Siegburg, Germany DA - 27.06.2023 KW - Referenzdaten KW - Reference data KW - Creep KW - Metadata schema KW - Syngle Crystal alloy PY - 2023 AN - OPUS4-57924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Hammerschmidt, T. A1 - Gedsun, A. A1 - Forti, M. A1 - Olbricht, Jürgen A1 - Stotzka, R. A1 - Skrotzki, Birgit A1 - Shakeel, Y. A1 - Hunke, S. A1 - Tsybenko, H. A1 - Aversa, R. A1 - Chmielowski, M. A1 - Hickel, T. T1 - IUC02 Framework for Curation and Distribution of Reference Datasets using Creep Data of Ni-Base Superalloys as an Example N2 - In our current view, reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) aims to develop a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for the creation and distribution of reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - NFDI-MatWerk Conference CY - Siegburg, Germany DA - 27.06.2023 KW - Referenzdaten KW - Reference data KW - Syngle Crystal alloy KW - Creep KW - Metadata schema PY - 2023 AN - OPUS4-57923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zurcher, Theo A1 - Serrano-Munoz, Itziar A1 - Mishurova, Tatiana A1 - Abreu Faria, Guilherme A1 - Degener, Sebastian A1 - Fridrici, Vincent A1 - Charkaluk, Eric A1 - Bruno, Giovanni T1 - Sliding wear resistance and residual stresses of parts repaired by laser metal deposition N2 - Large temperature gradients inherent to additive manufacturing (AM) processes induce large residual stress (RS) in the final part. Because RS can influence the tribological properties, this study focuses on the relationship between wear sliding properties and RS in IN718 coatings. Such coatings were deposited with a Laser metal deposition (LMD) machine using two different scanning strategies. The wear resistance and RS state were investigated after surface milling. RS were measured before and after wear tests on a reciprocating sliding test apparatus. Two different X-ray diffraction techniques were employed to measure the surface and subsurface state RS: Laboratory Energy Dispersive X-ray Diffraction (LEDXD) and Synchrotron X-ray Energy Dispersive Diffraction (SXEDD). Due to the milling process, the coatings show similar depth distributions of RS from 22 to 92 μm depth, but exhibit different magnitudes depending on the scanning strategy used. Reciprocating sliding wear tests induced high compressive residual stresses that erased the initial RS state, and a similar wear behavior was observed in the two samples. These samples possess similar texture and grain morphology. This demonstrates that the influence of RS on wear resistance is a second-order effect. Nevertheless, it was observed that RS can still impact the wear performance at the early testing stages of the repaired parts. KW - Additive manufacturing KW - Wear resistance KW - Residual stress PY - 2023 U6 - https://doi.org/10.1007/s10853-023-09129-4 SN - 0022-2461 SP - 1 EP - 18 PB - Springer AN - OPUS4-59084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Müller, Bernd R. A1 - Laquai, René A1 - Kupsch, Andreas A1 - Wieder, Frank A1 - Benemann, Sigrid A1 - Wilbig, Janka A1 - Günster, Jens A1 - Bruno, Giovanni T1 - Microstructural characterization of AP40 apatite-wollastonite glass-ceramic N2 - The microstructure of an apatite-wollastonite (code name AP40) glass-ceramic is analyzed in this study by combining 2D microscopy, phase analysis, X-ray absorption and synchrotron X-ray refraction computed tomography (XCT and SXRCT, respectively). It is shown that this combination provides a useful toolbox to characterize the global microstructure in a wide scale range, from sub-micrometer to millimeter. The material displays a complex microstructure comprising a glassy matrix with embedded fluorapatite and wollastonite small crystals. In this matrix, large (up to 200 μm) spike-shaped structures are distributed. Such microstructural features are oriented around a central sphere, thereby forming a structure resembling a sea urchin. A unique feature of SXRCT, in contrast to XCT, is that internal interfaces are visualized; this allows one to show the 3D distribution of these urchins with exceptionally good contrast. Furthermore, it is revealed that the spike-shaped structures are not single crystals, but rather composed of sub-micrometric crystals, which are identified as fluorapatite and diopside phases by SEM-EDX analysis. KW - Glass-ceramic KW - X-ray refraction KW - Computed tomography KW - Microstructure PY - 2023 U6 - https://doi.org/10.1016/j.ceramint.2022.12.130 SN - 0272-8842 VL - 49 IS - 8 SP - 12672 EP - 12679 PB - Elsevier Science CY - Amsterdam AN - OPUS4-57452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Günster, Jens T1 - A comparison of layerwise slurry deposition and (LSD-print) laser induced slip casting (LIS) for the additive manufacturing of advanced ceramics N2 - The presentation gives an overview of two slurry-based additive manufacturing (AM) technologies specifically developed for advanced ceramic materials. The “Layerwise Slurry Deposition” (LSD-print) is a modification of Binder Jetting making use of a ceramic slurry instead of a dry powder as a feedstock. In this process, a slurry is deposited layer-by-layer by means of a doctor blade and dried to achieve a highly packed powder layer, which is then printed by jetting a binder. The LSD-print technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. The Laser Induced Slip casting (LIS) technology follows a novel working principle by locally drying and selectively consolidating layer-by-layer a ceramic green body in a vat of slurry, using a laser as energy source. LIS combines elements of Vat Photopolymerization with the use of water-based feedstocks containing a minimal amount of organic additives. The resulting technology can be directly integrated into a traditional ceramic process chain by manufacturing green bodies that are sintered without the need of a dedicated debinding. Both technologies offer high flexibility in the ceramic feedstock used, especially concerning material and particle size. Advantages and disadvantages are briefly described to outline the specific features of LSD-print and LIS depending on the targeted application. T2 - AM Ceramics CY - Vienna, Austria DA - 27.09.2023 KW - Additive Manufacturing KW - Dental KW - Ceramics KW - Feldspar PY - 2023 AN - OPUS4-58468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -