TY - CONF A1 - Baer, Wolfram T1 - Detection and understanding of the chunky graphite degeneration in ferritic spheroidal graphite cast iron materials with respect to fatigue N2 - CHG is very different compared to other graphite degenerations or defects; Filigree, multi-branched string-like, 3d interconnected structure; Morphology and volumetric amount of CHG cannot be accessed by stereological interpretation of 2d section data; Field-tested, technically established method to quantify CHG in components not available; Fatigue: CHG causes substantial reduction in fatigue limit and significant increase in crack growth rate; Therefore: Avoid or exclude CHG! T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ductile cast iron KW - Chunky graphite degeneration KW - Fatigue KW - Correlation microstructure to properties PY - 2020 AN - OPUS4-54409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schridewahn, S. A1 - Spranger, F. A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Laser Implantation of Niobium and Titanium-Based Particles on Hot Working Tool Surfaces for Improving the Tribological Performance within Hot Stamping JF - Defect and Diffusion Forum N2 - Within the scope of this work, a laser implantation process has been used, in order to improve the tribological performance of hot stamping tools. This surface engineering Technology enables the generation of dome-shaped, elevated and highly wear resistant microfeatures on tool surfaces in consequence of a localized dispersing of hard ceramic particles via pulsed laser radiation. As a result, the topography and material properties of the tool and thus the tribological interactions at the blank-die interface are locally influenced. However, a suitable selection of hard ceramic particles is imperative for generating defect-free surface features with a high share of homogenously disturbed particles. For this purpose, different niobium (NbB2 and NbC) as well as titanium-based (TiB2 and TiC) materials were embedded on hot working tool specimens and subsequently analyzed with regard to their resulting shape and mechanical properties. Afterwards, modified pin-on-disk tests were carried out by using conventional and laser-implanted tool surfaces, in order to evaluate the wear and friction behavior of both tooling systems. KW - Surface modification KW - Triobology KW - Laser implantation PY - 2020 DO - https://doi.org/10.4028/www.scientific.net/DDF.404.117 SN - 1662-9507, VL - 404 SP - 117 EP - 123 PB - Trans Tech Publications Ltd. AN - OPUS4-53690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Altenburg, Simon A1 - Ehlers, Henrik A1 - Hilgenberg, Kai A1 - Mohr, Gunther T1 - Monitoring additive manufacturing processes by using NDT methods N2 - In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - ABENDI - Workshop CY - Online meeting DA - 19.11.2020 KW - Additive Fertigung PY - 2020 AN - OPUS4-52042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -