TY - CONF A1 - Farahbod, L. A1 - Thiede, Tobias A1 - Haberland, C. A1 - Witt, G. A1 - Piegert, S. T1 - Assessment of additively manufactured lattice structures for gas turbine applications N2 - Additive Manufacturing (AM) allows for the unique combination of building highly complex parts with integrated functional design. One particular design feature is known as lattice structures, which provide opportunities for innovative applications in the high-temperature regime of gas turbines. These structures require the development of reliable manufacturing methods to produce dependable structural integrity and geometrical accuracy. Consequently, the subsequent validation of these thin structures must also be examined in depth and differently than with current approaches. In this study, a holistic assessment of Ni based high temperature lattice structures is pursued, utilizing a systematic design-follows-complexity approach. Single struts of different geometries and orientations are investigated first, then combined to a variety of unit cell types and finally multiplied to complex lattice structures. Initial test trials with these thin structures proved a dependency of geometrical accuracy, microstructure and structural properties to the AM process setup. The trials underlined the need for design guidelines and a distinction between bulk and thin structures, as they showed differences in microstructural and mechanical behaviour. By application of high resolution, non destructive characterization methods such as computer tomography (CT and µCT), evaluation of defects and the thin structures’ metrology has been performed. First results revealed a number of defects compromising the structural integrity and therefore limiting the lifing behaviour. This was confirmed in destructive testing (e.g. tensile and compression). Furthermore, it was proven that the distribution, the number, the size and the type of defects are also dependent on the AM process setup. While there are large potentials for use of lattice structures in gas turbine applications, the experiments indicate the strong need for an increased understanding of manufacturing and design for these complex structures and that this gap needs to be bridged. T2 - EUROMAT 2017 CY - Thessaloniki, Greece DA - 17.09.2017 KW - Additive manufacturing KW - Computer tomography KW - Lattice structures KW - IN625 PY - 2017 AN - OPUS4-42948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Serrano Munoz, Itziar A1 - Léonard, Fabien A1 - Farahbod, L. T1 - Computed tomography of LBM produced In625 lattices: Integrity analysis from powder particles to structures N2 - We investigated lattice structure manufactured by laser beam melting with computed tomography on difference scales, such as powder scale, strut scale and lattice scale. The raw powder has been evaluated by means of synchrotron computed tomography (CT) at the BAM-Line (HZB Bessy II, Berlin). Therefore, the particle size distribution and even the pore size distribution was investigated and compared with results received by the producer by means of sieving. Studies with laboratory X-ray CT of porosity and roughness of manufactured struts in dependence of the build angle exhibited the tendency that elongated pores appear solely in a certain range near the edge. The integrity and load-bearing capacity of a lattice structure was investigated by means of in-situ CT during compression. The lattice structure was compressed by 10 % in height with an applied maximum force of 5 kN. We applied digital volume correlation algorithm on volumes of different load steps to quantifies the displacement within the structure. T2 - Metallographie-Tagung 2018 CY - Leoben, Austria DA - 19.09.2018 KW - Additive manufacturing KW - Laser beam melting KW - Computed tomography KW - Lattice structures KW - In-situ CT KW - Porosity KW - Roughness PY - 2018 AN - OPUS4-45998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Farahbod, L. A1 - Léonard, Fabien A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Computed tomography of SLM produced IN625 parts: From powder grains to lattice structures N2 - Im Fokus dieser Arbeit steht die computertomographische (CT) Untersuchung (Synchrotron- und Labor-CT) von IN625-Pulver und den daraus gefertigten Streben, welche wiederum zu Gitterstrukturen zusammengesetzt werden. Aufgrund der Filigranität wurde zur Fertigung dieser Proben das pulverbettbasierte selektive Laserschmelzen verwendet. Porositätsanalysen und Größenverteilungen wurden für das Pulver bei einer rekonstruierten Voxelgröße von 0,5µm ermittelt. 6,0mm lange Streben variierten im Aufbauwinkel von 30° bis 90° zur Bauplattform und zeigten so den Unterschied zwischen Up- und Down-Skin hinsichtlich der Rauigkeit und Porenverteilung. Die Gitterstrukturen konnten in-situ mit bis zu 5,0kN belastet werden, um deren Verformung computertomographisch zu erfassen. T2 - 7. VDI-TUM Expertenforum CY - Garching b. München, Germany DA - 13.09.2018 KW - Additive manufacturing KW - Laser beam melting KW - Computed tomography KW - Lattice structures PY - 2018 AN - OPUS4-46069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -