TY - CONF A1 - Gumenyuk, Andrey A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Rethmeier, Michael T1 - Influence of an external applied AC magnetic field on the melt pool dynamics at high-power laser beam welding N2 - The study deals with the determination of the influence of an externally applied oscillating magnetic field on the melt pool dynamics in high power laser beam and hybrid laser arc welding processes. An AC magnet was positioned under the workpiece which is generating an upward directed electromagnetic force to counteract the formation of the droplets. To visualise the melt flow characteristics, several experiments were carried out using a special technique with mild steel from S355J2 with a wall thickness of up to 20 mm and a quartz glass in butt configuration. The profile of the keyhole and the melt flow were recorded with a high-speed camera from the glass side. Additionally, the influence of the magnetic field orientation to the welding direction on the filler material dilution on laser hybrid welding was studied with variating oscillation frequency. The element distribution over the whole seam thickness was measured with X-ray fluorescence (XRF). The oscillation frequency demonstrated a greater influence on the melt pool dynamics and the mixing of the elements of the filler wire. The high-speed recordings showed, under the influence of the magnetic field, that the melt is affected under strong vortex at the weld root, which also avoids the formation of droplets T2 - The 18th Nordic Laser Materials Processing Conference CY - Lulea, Sweden DA - 18.01.2022 KW - Laser beam welding KW - Melt pool dinamics PY - 2022 AN - OPUS4-54331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Rethmeier, Michael T1 - The effect of an AC magnetic field on flow dynamics and filler wire mixing in high power laser hybrid welding N2 - The use of the oscillating magnetic field as a backing support for the welding of thick components is already known. The influence of the magnetic field and the induced Lorentz forces in the melt on the melt pool geometry and the fluid flows is not yet fully investigated. The study deals with the determination of the influence of an externally applied oscillating magnetic field on the melt pool dynamics in high power laser hybrid welding process. An AC magnet was positioned under the specimen to create an electromagnetic force directed upwards to oppose dropping. To visualise the flow characteristics of the melt, several experiments were carried out using a technique specifically designed for this purpose with mild steel made of S355J2 with a wall thickness of 20 mm and a quartz glass in a butt configuration. A high-speed camera was used to monitor the geometry of the melt pool through the glass. The influence of the magnetic field orientation to the welding direction and the oscillation frequency on the molten pool was investigated for the case of the metal-glass configuration and for laser hybrid welding. The high-speed recordings were analysed with the Optical Flow Algorithm to characterise the flow within the melt pool. The element distribution over the whole seam thickness was evaluated by X-ray fluorescence (XRF). The high-speed analysis showed that in the melt pool two vortices are formed, one in the upper part and the other in the lower part. In the region where the two vortices come together, a narrow region (necking region) forms in the melt pool. The evaluation of the high-speed recordings shows that the depth of the region where the two vortices meet is strongly influenced by the oscillation frequency. Additionally, the oscillation frequency demonstrated a greater influence on the melt pool dynamics and the mixing of the elements of the filler wire. T2 - X International Conference «Beam Technologies & Laser Application» CY - Pushkin (St. Petersburg), Russia DA - 20.09.2021 KW - Hybrid laser arc welding KW - Laser beam welding KW - Material transport PY - 2021 AN - OPUS4-53573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Rethmeier, Michael T1 - Improvement of the mechanical properties and corrosion resistance of laser welds on thick duplex plates by laser cladded buttering N2 - Because of its excellent corrosion resistance, high tensile strength and high ductility, duplex stainless steel 2205 offers many areas of application. Though laser beam welding accompanied by high cooling rates, duplex steels tend to perform higher ferrite contents in weld metal as the base metal, which leads to a reduction of ductility and corrosion resistance of the weld joint. To overcome this problem, a solution, based on buttering the plate edges by laser metal deposition (LMD) with material containing higher Ni concentrations prior to laser welding was suggested. In this context different process parameters for LMD and different mixtures of duplex and nickel powder, were investigated. In a second step the possibility of welding those edges defect free while achieving balanced austenite-ferrite ratio was verified with metallographic analysis, Electron Backscatter Diffraction (EBSD) and impact testing according to Charpy. The improved corrosion resistance was observed with ASTM G48 standard test method. T2 - X International Conference «Beam Technologies in Welding and Materials Processing» CY - Odessa, Ukraine DA - 7.09.2021 KW - Laser beam welding KW - Laser metal deposition KW - Duplex steels PY - 2021 AN - OPUS4-53568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Rethmeier, Michael T1 - Investigation of the gap bridgeability at high-power laser hybrid welding of plasma-cut thick mild steels with AC magnetic support N2 - One of the challenges of the high-power hybrid laser welding of thick steels is the sensitivity of the process of the process to manufacturing tolerances. This usually leads to a time-consuming preparation of the welding edges, such as milling. The study deals with the influence of the edge quality of milled and plasma-cut steel made of S355J2 with a wall thickness of 20 mm on the laser hybrid welded seam quality. Furthermore, the gap bridgeability and the tolerances towards edge misalignment was investigated. An AC magnet was used as backing support to prevent sagging and positioned under the workpiece, to generate an upwards directed electromagnetic pressure. The profiles of the edges and the gap on the top and root side were measured using a digital camera. Single-pass laser hybrid welds of plasma-cut edges could be welded using a laser beam power of just 13.7 kW. A gap bridgeability up to 2 mm and misalignment of edges up to 2 mm could be achieved successful. Additionally, the independence of the cutting side and the welding side was shown, so that samples were welded to the opposite side to their cutting. For evaluation of internal defects or irregularities, X-ray images were carried out. Charpy impact strength tests were performed to determine the toughness of the welds. T2 - X International Conference «Beam Technologies in Welding and Materials Processing» CY - Odessa, Ukraine DA - 7.09.2021 KW - Laser beam welding KW - Hybrid laser arc welding KW - Material transport PY - 2021 AN - OPUS4-53569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Üstündag, Ö. A1 - Fritzsche, André A1 - Avilov, V. A1 - Rethmeier, Michael T1 - High power laser beam welding of thick materials using EM melt pool control N2 - Electromagnetic weld pool support system is illustrated successfully for hybrid laser arc welding of 20 -30 mm ferromagnetic Steels Welding of thick-walled steels in flat position and reduced welding velocities is possible Gap and misalignment between welded plates can be tolerated by use of this Technology Opportunity to reduce the laser beam power because of reduced welding velocity respectively increase of weldable material thickness with a 20 kW- fibre laser Mechanical properties of welds are in correspondence with requirements of Standards. T2 - SLT 2018 10. Stuttgarter Lasertage CY - Suttgart, Germany DA - 05.06.2018 KW - Hydrostatic and arc pressure exceed the Laplace pressure PY - 2018 AN - OPUS4-45229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gook, Sergej T1 - New developments in high power laser and hybrid welding of thick plates for application in modern ship building N2 - High power laser beam welding has been already introduced in ship building industry since last two decades and is characterized by higher performance as conventional arc welding technologies through its higher welding speed, penetration depth and therefore higher productivity. Moreover, high quality weld joints are achievable thanks to a stronger automatization degree and better repeatability of the process. A further advantage of the laser beam welding is a manufacturing of parts with very low distortion according to much lower heat input, so that rework amount can be reduced significantly. Nevertheless, there are still some unresolved problems limiting the range of application of the technology in part manufacturing within ship building industry, restricted by development and application of new materials or new design of ship vessels. The present contribution deals with some novel aspects of laser beam welding technology allowing to widen this range significantly. One of the possibilities is to increase the weld seam thickness for single pass laser or laser-hybrid welding is to apply contactless EM-support system based on generation of the Lorentz force counteracting the liquid metal drop out. Also, application of laser-hybrid welding technology for welding novel materials like cold resistant steel X8Ni9 used for construction of LNG tanks brings technological and design advantages comparing to conventional welding technologies by using of a similar alloyed filler wire instead of expensive Ni-based filler material. Finally, it is shown how the application of computational techniques can be used to helps to improve the quality of laser welded joints and avoid the critical weld failure by optimization of the welding process parameters. T2 - SHY Virtual Laserforum 2020 CY - Online meeting DA - 01.09.2020 KW - Ship building KW - Laser beam welding KW - Hybrid laser arc welding PY - 2020 UR - https://laserforum.mobieforum.fi/ AN - OPUS4-51221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Üstündag, Ö. A1 - Avilov, Vjaceslav A1 - Fritzsche, André A1 - Rethmeier, Michael T1 - Hybrid laser arc welding of thick-walled ferromagnetic steels with electromagnetic weld pool support N2 - Electromagnetic weld pool support system is illustrated successfully for hybrid laser arc welding of 20 mm ferromagnetic steels. Welding of thick-walled steels in flat position and reduced welding velocities is possible. Skin depth must be smaller than the plate thickness for protect the electric arc against external oscillating magnetic field. Residual magnetic field has a low influence, the deflection of the arc can be neglected. At high AC frequency more AC power is needed for ideal compensation (Hysteresis losses). T2 - The 70th IIW Annual Assembly and International Conference CY - Shanghai, People's Republic of China DA - 25.06.2017 KW - Electromagnetic weld pool support KW - Hybrid laser arc welding PY - 2017 AN - OPUS4-41259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Bakir, Nasim A1 - Rethmeier, Michael A1 - Pavlov, V. A1 - Zavjalov, S. A1 - Volvenko, S. T1 - Use of optical measurement technique to investigate the hot cracking sensitivity of 316L during laser beam welding N2 - This technique is the first to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. Dependency between the external strain rate and the critical local strain has been observed. The local critical strain in vicinity of the solidification front has observed between 3.6 and 4.2%. T2 - The 70th IIW Annual Assembly and International Conference CY - Shanghai, People's Republic of China DA - 25.06.2017 KW - Optical measurment technique KW - Hot crack PY - 2017 AN - OPUS4-41258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Bakir, Nasim A1 - Rethmeier, Michael A1 - Pavlov, Vitaly A1 - Zavjalov, Sergey A1 - Volvenko, Sergey T1 - Novel metrology to determine the critical strain conditions required for solidification cracking during laser welding of thin sheets N2 - The weldability of materials is still for many years a highly contentious issue, particularly regarding the causes of the hot crack formation. Because of the process-related temperature and emissions, direct measurement for the arising strain in the close vicinity of the welding process is challenged. therefore, the externally loaded hot cracking testes remain for decades the only way to determine the critical straining conditions for solidification cracking. In this study, a novel optical two-dimensional in situ observation technique has been developed to analyse the strain evaluation during the welding process in the moment of crack formation. Additionally, the Controlled Tensile Weldability test (CTW test) was used to generate the hot crack under different global straining conditions. To record the welding process and the moment of the solidification crack initiation a CMOS camera was used which inserted coaxially into the optical path of the welding laser. As illumination source a diode laser with wave length 808 nm was employed to illuminate the welding region. An interference filter was placed on the camera lens, allowing only the illumination wavelength to pass through and reflecting all other wavelengths, so that the melt pool and the re-solidifying metal could be visualized in a single image. in order to obtain good temporal resolution, the frame rate of the camera was set to 1100 frame per second in. The contrast in images obtained using this unique setup allows to apply the optical flow technique based on Lucas-Kanade (LK) algorithm to follow the pixels in each image sequence and then to calculate the displacement field. The strain was calculated based on the estimated displacement. Using this technique, the local strains and strain rates under different global straining condition has been determined and analysed. The results shown Dependency between the external strain rate and the critical local strain and strain rate has been observed. That is to say, the critical local strain and strain rate are increased with an increase of the strain rate. Moreover, the described procedure of the optical measurement allows to determine the real martial dependent values of critical strain and strain rate characterizing transition to the hot cracking during laser welding processes.The experiments as well as the measurement has been performed on the stainless steel 316L (1.4404) T2 - 9-th international Conference Beam Technology and Laser Application CY - St. Petersburg, Russia DA - 17.09.2018 KW - Laser welding KW - Novel optical metrology KW - Solidification cracking KW - Stainless steel PY - 2018 AN - OPUS4-46287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey T1 - The bulging effect and its relevance in high power laser beam welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and two thermal imaging cameras is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs above 10 mm penetration depth. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root. T2 - 1st Annual Assembly and Conference of The Welding Federation of Africa (TWF-Africa) CY - Cairo, Egypt DA - 14.03.2023 KW - Laser beam welding KW - Melt pool dinamics PY - 2023 AN - OPUS4-58695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -