TY - CONF A1 - Bonse, Jörn A1 - Mirabella, Francesca A1 - Mezera, Marek A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Chemical and structural changes at the surface of titanium materials upon irradiation with near-infrared ultrashort laser pulses N2 - Due to its large strength-to-weight ratio and excellent biocompatibility, titanium materials are of paramount importance for medical applications, e.g. as implant material for protheses. In this work, the evolution of various types of laser-induced micro- and nanostructures emerging on titanium or titanium alloys upon irradiation by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment is studied for various laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz). The morphologies of the processed surfaces were systematically characterized by optical and scanning electron microscopy (OM, SEM). Complementary white-light interference microscopy (WLIM) revealed the corresponding surface topographies. Chemical and structural changes were analysed through depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray diffraction (XRD) analyses. The results point towards a remarkable influence of the laser processing parameters on the surface topography, while simultaneously altering the near-surface chemistry via laser-induced oxidation effects. Consequences for medical applications are outlined. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - ToF-SIMS KW - Chemical analysis KW - Titanium PY - 2022 AN - OPUS4-54931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Tammas-Williams, S. A1 - Todd, I. T1 - CT for additive manufacturing process characterisation: assessment of melt strategies on defect population N2 - Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing (AM) technique for near net-shape manufacturing of high-value titanium components. However, as with every emerging technique, the manufacturing processes can still be greatly improved and optimised. In particular, the links between AM settings and the resulting sample porosity is of great interest, as the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography (CT), and correlated to the SEBM process variables. A strong relationship was found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. T2 - Conference on Industrial Computed Tomography iCT2016 CY - Wels, Austria DA - 09.02.2016 KW - Titanium KW - Additive Manufacture KW - Selective Electron Beam Melting KW - Pores KW - Defects KW - X-ray Computed Tomography PY - 2016 AN - OPUS4-39186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silverstein, R. A1 - Eliezer, D. A1 - Böllinghaus, Thomas T1 - Hydrogen-trapping mechanisms of TIG-welded 316L austenitic stainless steels N2 - The interaction of hydrogen with various tungsten-inert-gas-welded austenitic stainless steels’ (AUSS) microstructure is studied by means of desorption/absorption analysis and microstructure observations. One of the limitations of welding is created by the presence of hydrogen in the weld, which can shorten the steel’s service life. The local hydrogen concentration, trapping, and its distribution along the welded samples were studied by thermal desorption spectrometry and were supported by X-ray diffraction (XRD) and electronic microstructural observations. Hydrogen content demonstrated a dependence on the welding zone. It was found that hydrogen distribution, and accepted microstructure during welding, played a significant role in the trapping mechanism of 316L AUSS. XRD analysis revealed residual stresses which were caused due to the presence of hydrogen in c-phase. It was shown that the austenite microconstituents inside 316L can have a crucial effect in preventing hydrogen-assisted cracking phenomenon. The effects of AUSS microstructure on hydrogen absorption and desorption behavior are discussed in detail. KW - Thermal-desorption spectroscopy KW - Ferritic steels KW - Strain rates KW - Duplex KW - Embrittlement KW - Diffusion KW - Titanium KW - Alloys KW - Behavior PY - 2018 U6 - https://doi.org/10.1007/s10853-018-2349-6 SN - 1573-4803 SN - 0022-2461 VL - 53 IS - 14 SP - 10457 EP - 10468 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-46833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mushtaq, S. A1 - Steers, E.B.M. A1 - Barnhart, D. A1 - Churchill, G. A1 - Kasik, M. A1 - Richter, Silke A1 - Pfeifer, Jens A1 - Putyera, K. T1 - The production of doubly charged sample ions by “charge transfer and ionization” (CTI) in analytical GD-MS N2 - Normally, in analytical GD-MS, the doubly charged metallic ion signals from the sample are several orders of magnitude less than the corresponding singly charged signals. However, we have observed that using a neon plasma, the M++ signals of some elements, which have double ionization energies close to the first ionization energy of neon, are of the same order as the M+ signal. Doubly charged ions may be produced directly in the discharge cell by electron ionization (EI), and also by two electron Penning ionization (TEP), but these processes cannot explain the above effect. In this paper, we suggest that an additional process named as ‘Charge Transfer and Ionization’ (CTI) produces such ions either in their ionic ground state or in an excited state. To confirm that this process is typical of the discharges used in GD-MS and not an artefact of any particular form of cell and ion extraction system, we have carried out comprehensive experimental measurements using three different GD-MS instruments, viz., Nu Astrum, VG9000 and ELEMENT GD and our results provide clear evidence for CTI. This is the first time the process has been identified as an ionization process in analytical GD-MS. CTI must be differentiated from Asymmetric Charge Transfer (ACT), which is a “selective” process and requires a close energy match (e.g. ΔE < 0.5 eV for a strong effect). On the other hand, CTI is “non-selective” in the sense that a close energy match is not required (e.g. a strong effect is observed with ΔE ∼ 2 eV), although the process only occurs for a limited number of elements, depending on the plasma gas used and the total energy required to doubly ionize the metallic atom. KW - Titanium KW - Glow discharge processes KW - Doubly charged ions KW - The charge transfer and ionization process (CTI) KW - Krypton KW - Neon PY - 2017 U6 - https://doi.org/10.1039/C6JA00415F SN - 0267-9477 SN - 1364-5544 VL - 32 IS - 9 SP - 1721 EP - 1729 PB - Royal Society of Chemistry AN - OPUS4-41108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina A1 - Wirth, Thomas A1 - Sturm, Heinz A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium N2 - The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ∼150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ∼200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Oxidation KW - Titanium KW - Auger electron spectroscopy PY - 2017 U6 - https://doi.org/10.1063/1.4993128 SN - 0021-8979 VL - 122 IS - 10 SP - 104901, 1 EP - 9 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-41905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tammas-Williams, S. A1 - Zhao, H. A1 - Léonard, Fabien A1 - Derguti, F. A1 - Todd, I. A1 - Prangnell, P.B. T1 - XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting N2 - Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (b0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship was found with the differentbeamstrategies used to contour ,and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. KW - Titanium KW - Additive Manufacture KW - Selective Electron Beam Melting KW - Pores KW - X-ray computed tomography PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-416577 UR - http://www.sciencedirect.com/science/article/pii/S104458031500039X?via%3Dihub VL - 102 SP - 47 EP - 61 CY - Materials Characterization AN - OPUS4-41657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Slachciak, Nadine A1 - Elert, Anna Maria A1 - Griepentrog, Michael A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Dörfel, Ilona A1 - Sturm, Heinz A1 - Pentzien, Simone A1 - Koter, Robert A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization N2 - Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms. KW - Femtosecond laser KW - Titanium KW - Oxidation KW - Friction PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-445609 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 4 SP - 326, 1 EP - 10 PB - Springer-Verlag AN - OPUS4-44560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior and failure mechanisms of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in AM process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and microstructural evolution of AMparts, especially in loading conditions typical for safety-relevant applications e.g. in the aerospace or power engineering. Within the scope of the presented investigations, a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime was carried out in the range of 0.3 to 1.0 % strain amplitude at room temperature, 250°C and 400°C. The Ti-6Al-4V specimens are machined out of lean cylindrical rods, which were fabricated using powder laser metal deposition (LMD) with an improved build-up strategy. The improved strategy incorporates variable track overlap ratios to achieve a constant growth in the shell and core area. The low-cycle-fatigue behavior is described based on cyclic deformation curves and strain-based fatigue life curves. The lifetimes are fitted based on the Manson-Coffin-Basquin relationship. A characterization of the microstructure and the Lack-of-Fusion (LoF)-defect-structure in the as-built state is performed using optical light microscopy and high-resolution computed tomography (CT) respectively. The failure mechanism under loading is described in terms of LoF-defects-evolution and crack growth mechanism based on an interrupted LCF test with selected test parameters. After failure, scanning electron microscopy, digital and optical light microscopy and CT are used to describe the failure mechanisms both in the longitudinal direction and in the cross section of the specimens. The fatigue lives obtained are comparable with results from previous related studies and are shorter than those of traditionally manufactured (wrought) Ti-6Al-4V. In this study new experimental data and understanding of the mechanical behavior under application-relevant loading conditions (high temperature, cyclic plasticity) is gained. Furthermore, a better understanding of the role of LoFdefects and AM-typical microstructural features on the failure mechanism of LMD Ti-6Al-4V is achieved. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-49492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior, tensile properties and microstructural features of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in additive manufacturing (AM) process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and its relationship with the microstructural features of AM-parts, especially in loading conditions typical for safety-relevant applications. Within the scope of the presented ongoing investigations, a basic microstructural characterization, tensile tests at room and elevated temperature (400°C) as well as a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime are carried out in the as-built state. After failure, different techniques are used to describe the failure mechanisms of the specimens. The AM-Specimens are provided by the Fraunhofer institute for production systems and design technology and investigated at the BAM following the philosophy of the TF-Project AGIL. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - DED-L KW - LMD KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-48067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -