TY - JOUR A1 - Crouzier, L. A1 - Feltin, N. A1 - Delvallée, A. A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Cios, Grzegorz A1 - Tokarski, T. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis of the dimensional properties of bipyramidal titania nanoparticles by complementing electron microscopy with other methods N2 - In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano‐bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging. Furthermore, a recently developed method, Transmission Kikuchi Diffraction (TKD), which needs preparation of the crystalline NPs on electron‐transparent substrates such as TEM grids, has been tested with respect to its capability of identifying the geometrical orientation of the individual NPs. With the NPs prepared homogeneously on a TEM grid, the transmission mode in a SEM, i.e., STEM‐in‐SEM (or T‐SEM), can be also applied to extract accurate projection dimensions of the nanoparticles from the same sample area as that analysed by SEM, TKD and possibly AFM. Finally, Small Angle X‐ray Scattering (SAXS) can be used as an ensemble technique able to measure the NPs in liquid suspension and, with ab‐initio knowledge of the NP shape from the descriptive imaging techniques, to provide traceable NP size distribution and particle concentration. KW - Nanoparticles KW - Complex-shape KW - Bipyramid KW - Electron microscopy KW - AFM KW - Size measurements KW - TKD KW - STEM-in-SEM KW - SAXS KW - Nanoparticle concentration KW - Correlative analysis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-539888 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-53988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Häusler, Ines A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Palasse, L. A1 - Dirscherl, K. T1 - Characterization of porous, TiO2 nanoparticle films using on-axis TKD in SEM – a new nano-analysis tool for a large-scale application N2 - A combined methodical approach is tested with respect to the characterization of the inner structure of porous TiO2 layers as typically used in modern dye sensitized solar cells (DSSC). Their performance is directly linked to the surface area of the pore network. The micrometer thick layer employed was manufactured by screen-printing of a starting TiO2 powder constituted of shape-controlled, bipyramidal anatase nanoparticles on FTO/glass substrates. The analytical methods exploited in our study are Focused Ion Beam (FIB) slicing followed by 3D reconstruction as well as the new approach transmission Kikuchi diffraction (TKD) technology in the scanning electron microscope (SEM). Size and shape distribution of the TiO2 NPs within the layer can be extracted. SEM in transmission mode and atomic force microscopy (AFM) have been used to verify the dimensional data obtained by the new combined methodical approach. Its analytical benefits but also the challenges and limitations are highlighted. KW - TiO2 KW - TKD KW - Particle size distribution KW - Nanoparticles KW - Porous film PY - 2017 UR - https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8A8B29335A2F4D0CB6922F6F5A19C5DC/S1431927617003397a.pdf/characterization_of_porous_tio2_nanoparticle_films_using_onaxis_tkd_in_sem_a_new_nanoanalysis_tool_for_a_largescale_application.pdf U6 - https://doi.org/10.1017/S1431927617003397 VL - 23 IS - S1 (July) SP - 542 EP - 543 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-41924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Wollschläger, Nicole A1 - Pallase, L. A1 - Häusler, Ines A1 - Ortel, Erik A1 - Dirscherl, K. T1 - Characterization of Porous, TiO2 Nanoparticle Films Using On-Axis TKD in SEM – a New Nano-Analysis Tool for a Large-Scale Application N2 - A combined methodical approach is tested with respect to the characterization of the inner structure of porous TiO2 layers as typically used in modern dye sensitized solar cells (DSSC). Their performance is directly linked to the surface area of the pore network. The micrometer thick layer employed was manufactured by screen-printing of a starting TiO2 powder constituted of shape-controlled, bipyramidal anatase nanoparticles on FTO/glass substrates. The analytical methods exploited in our study are Focused Ion Beam (FIB) slicing followed by 3D reconstruction as well as the new approach transmission Kikuchi diffraction (TKD) technology in the scanning electron microscope (SEM). Size and shape distribution of the TiO2 NPs within the layer can be extracted. SEM in transmission mode and atomic force microscopy (AFM) have been used to verify the dimensional data obtained by the new combined methodical approach. Its analytical benefits but also the challenges and limitations are highlighted. T2 - Microscopy & Microanalysis 2017 Meeting CY - St. Louis, MO, USA DA - 06.08.2017 KW - Porous layers KW - TiO2 KW - Nanoparticles KW - Size and shape distribution KW - TKD KW - SEM PY - 2017 AN - OPUS4-41660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cios, Grzegorz A1 - Hodoroaba, Vasile-Dan A1 - Tokarski, T. A1 - Bala, P. T1 - High throughput nanoparticle analysis using transmission Kikuchi diffraction N2 - In the present paper we show an approach of measuring large numbers of nanoparticles in a single scan TKD. TiO2 anatase nanoparticles (NP) of bipyramidal shape were deposited on standard carbon grid used for TEM. The procedure used promoted formation of NP ‘monolayer’ islands with uniform distribution of NPs on the carbon surface which allowed mapping of large number of nanoparticles in the single island. Collection of whole map covering ~2800 nanoparticles took nearly 20 minutes. Inverse pole figure color coded map indicates that the NPs are either lying on a {101} facet (within 10° range around perfect {101} parallel to the carbon surface orientation) on the carbon film or are lying on a {100} facet (within 10° range around the perfect {100} parallel to the carbon surface orientation). Very unlikely was the NP orientation standing on a {001} face. The NPs size distribution described as equivalent circle diameter (ECD) has been also evaluated and the mean NP ECD was 59 nm with standard deviation of 15 nm, i.e. in good agreement with electron microscopy or AFM results. This study shows high potential of the technique for crystalline NPs analysis with respect to geometrical orientation of the particles on the substrate. With known orientation, the 3D dimensional characterisation of such non-spherical NPs becomes possible from 2D projection electron micrographs. Moreover, the NP size distribution can be easily extracted. Superior accuracies down to 1-2 nm are achievable. The approach is applicable also on thin lamellae extracted from particulate (or mesoporous) layers. T2 - EMAS 2023 - 17th European Workshop on Modern Developmennts and Applications in Microbeam Analysis CY - Krakow, Poland DA - 07.05.2023 KW - Nanoparticles KW - TKD KW - Electron microscopy KW - TiO2 KW - Orientation PY - 2023 UR - https://www.microbeamanalysis.eu/events/event/60-emas-2023-17th-european-workshop-on-modern-developments-and-applications-in-microbeam-analysis AN - OPUS4-57519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -