TY - CONF A1 - Frei, J. A1 - Rethmeier, Michael T1 - Overview and new developments in research on resistance spot welding of advanced high strength steels T2 - The 5th International Conference on Steels in Cars and Trucks N2 - The safe joining of new, freshly developed steel types keeps challenging the industry–and is assumed to go on in doing so. In the body-in-white production, these materials are mainly joined using resistance spot welding. During the past ten years, various investigations on resistance spot welding of advanced high strength steels have been carried out at Fraunhofer IPK and the Federal Institute for Materials Research and Testing (BAM). This paper aims to give an overview about both the top former and recent studies and results. The investigated topics are the influences of manufacturing conditions as initial gaps and restraints on spot welds, their impact on the fatigue strength of a joint and the cracking-wise safe weldability of AHSS. Caused by non-ideal manufacturing conditions, cracks in spot welds (e.g. caused by liquid metal embrittlement) are still regarded as a potential risk in industrial practice. Therefore, a method to evaluate the safe weldability regarding the cracking susceptibility was developed for AHSS. The method is easy to perform, even without expensive laboratory equipment. It allows the end user to establish a material ranking regarding the cracking susceptibility of the handled steels. Recently, coupled thermo-mechanical finite element modelling has been used to describe critical stress-strain conditions responsible for the occurrence of liquid metal embrittlement, and to improve the understanding of the process. T2 - The 5th International Conference on Steels in Cars and Trucks CY - Amsterdam-Schiphol, The Netherlands DA - 19.06.2017 KW - Advanced high strength steels KW - Resistance spot welding KW - Cracking susceptibility KW - Liquid metal embrittlement KW - Material ranking KW - Fatigue strength KW - Gaps KW - Finite element method PY - 2017 SP - 1 EP - 8 AN - OPUS4-43189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhne, Chr. A1 - Meschut, G. A1 - Biegler, M. A1 - Frei, J. A1 - Rethmeier, Michael T1 - Prevention of liquid metal embrittlement cracks JF - Science and technology of welding and joining N2 - Advanced high strength steels are usually coated by a zinc layer for an increased resistance against corrosion. During the resistance spot welding of zinc coated steel grades, liquid metal embrittlement (LME)mayoccur. As a result, cracking inside and around the spot weld indentation is observable. The extent of LME cracks is influenced by a variety of different factors. In this study, the impact of the used electrode geometry is investigated over a stepwise varied weld time. A spot welding finite element simulation is used to analyse and explain the observed effects. Results show significant differences especially for highly increased weld times. Based on identical overall dimensions, electrode geometries with a larger working plane allow for longer weld times, while still preventing LME within the investigated material and maintaining accessibility. KW - Liquid metal embrittlement KW - Crack KW - Advanced high strength steels KW - Resistance spot welding KW - Electrode geometry PY - 2019 DO - https://doi.org/10.1080/13621718.2019.1693731 VL - 25 IS - 4 SP - 303 EP - 310 PB - Taylor & Francis AN - OPUS4-49833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Rethmeier, Michael T1 - Susceptibility of electrolytically galvanized dual-phase steel sheets to liquid metal embrittlement during resistance spot welding JF - Welding in the World N2 - Modern advanced high-strength steel sheets for automotive applications are mostly zinc coated for corrosion resistance. However, the presence of zinc can—besides its positive effects—increase the material’s susceptibility to liquid metal embrittlement (LME) during resistance spot welding (RSW). Zinc and its eutectics are, due to their low melting point, present in liquid state during the welding process. This fact can, in combination with other factors like tensile strains or stresses, lead to the formation of brittle, intergranular cracks in the weld, and heat-affected zone. This phenomenon is commonly called liquid metal embrittlement. In order to understand the process from a practical perspective, one must learn what factors facilitate it. In this study, industry-relevant parameters are investigated regarding their influence on the occurrence of LME, embodied by the formation of surface cracks. It was found that electrode wear has less of an influence on the cracking susceptibility than welding current or tensile stresses. Finite element analysis is believed to provide a powerful tool in order to gain insights on the formation process. Modeling of the process shows promising initial results, revealing the underlying local stress and strain fields, unmeasurable with common techniques. KW - Resistance spot welding KW - High-strength steel sheets KW - Surface cracks KW - Liquid metal embrittlement KW - Zinc PY - 2018 DO - https://doi.org/10.1007/s40194-018-0619-1 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 5 SP - 1031 EP - 1037 PB - Springer AN - OPUS4-45775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -