TY - CONF A1 - Beck, Uwe T1 - Standardization of ellipsometry N2 - The talk addresses the STANDARDIZATION OF ELLIPSOMETRY and the following points are discussed in more detail: historical background of ellipsometry, history of International Conferences on Ellipsometry, Workshops Ellipsometry in Germany and Europe, information on German/European Working Group Ellipsometry, technical/industrial importance of ellipsometry, applications on non-ideal material systems and standardization activities on ellipsometry. T2 - DIN NA Dünne Schichten für die Optik, Mainz CY - Mainz, Germany DA - 06.06.2018 KW - Standardization KW - Ellipsometry KW - Modelling KW - Accreditation PY - 2018 AN - OPUS4-45167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Gräf, S. T1 - Ten Open Questions about Laser-Induced Periodic Surface Structures N2 - Laser-induced periodic surface structures (LIPSS) are a simple and robust route for the nanostructuring of solids that can create various surface functionalities featuring applications in optics, medicine, tribology, energy technologies, etc. While the current laser technologies already allow surface processing rates at the level of m2/min, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry, as well as by limitations in controlling the processing of LIPSS and in the long-term stability of the created surface functions. This Perspective article aims to identify some open questions about LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, we intend to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry. KW - Laser-induced periodic surface structures (LIPSS) KW - Industrial application KW - Functional properties KW - Surface functionalization KW - Modelling PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539503 DO - https://doi.org/10.3390/nano11123326 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 21 PB - MDPI CY - Basel, Switzerland AN - OPUS4-53950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank T1 - Pressure vessel subjected by fire N2 - Test facilities at BAM, Types of fire test, Vessel testing, Modelling of vessel response to fire, Current research, Future research T2 - COTEQ 2017 CY - Rio de Janeiro, Brazil DA - 15.05.2017 KW - Vessels KW - Fire KW - Modelling PY - 2017 AN - OPUS4-40307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haith, M. I. A1 - Ewert, Uwe A1 - Hohendorf, Stefan A1 - Bellon, Carsten A1 - Deresch, Andreas A1 - Huthwaite, P. A1 - Lowe, M. J. S. A1 - Zscherpel, Uwe T1 - Modelling based radiography for NDE of subsea pipelines N2 - This work presents the use of limited experimental measurements to develop a set of calibrated Simulation parameters that can then be used for reliable simulation of subsea pipeline inspections. The modelling software aRTist is used as the simulation tool, and the calibration is through comparison with experimental images of a well characterised sample in a water tank. Image Quality parameters such as signal-to-noise ratio, contrast and basic spatial resolution are compared with the aim of matching simulated values to experimental results. Currently the model is partially calibrated, with signal-to-noise ratio successfully matched while differences are still found in contrast-to-noise ratio comparisons. This means that measurements depending on absolute intensity are not accurate enough in the simulation at this stage. However, the simulation is found to be accurate for wall thickness measurements in tangential images, which are not based on absolute intensity, with simulated and experimental cases producing similar results. T2 - 42nd Annual Review of Progress CY - Minneapolis, Minnesota, USA DA - 26.07.2015 KW - Modelling KW - Radiography KW - Pipeline inspection KW - Nondestructive evaluation PY - 2016 SN - 978-0-7354-1353-5 DO - https://doi.org/10.1063/1.4940575 SN - 0094-243X VL - 1706 SP - 110004-1 EP - 110004-8 PB - AIP Publishing AN - OPUS4-37553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Amouroux, B. A1 - Würth, Christian A1 - Roux, C. A1 - Eftekhari, A. A1 - Sliwa, M. A1 - Bouchet, A. A1 - Micheau, J.-C. A1 - Resch-Genger, Ute A1 - Coudret, C. T1 - Time-Resolved Rate Equation Analysis Disclose Kinetics Controlling Luminescence of Nanometer Tm-Upconverting Nanoparticles N2 - Upconversion luminescence of lanthanide-based upconversion nanoparticles (UCNPs) is a nonlinear step-wise process in which the consecutive absorption of multiple, low-energy photons results in the subsequent emission of a high-energy photon. The primary upconversion mechanism is energy transfer upconversion (ETU) from a sensitizer (Yb3+) to an activator (Tm3+). It requires the absorption of several excitation lowenergy photons by Yb3+, followed by the sequential energy transfer to Tm3+ions. Excited states relax to their ground states either radiatively by emitting a high-energy photon or non-radiatively by multiphonon relaxation through the crystalline host matrix. The time-resolved rise and decay luminescence curves of a set of five ultrasmall have been recorded under varying power near-infrared μs pulses. Six wavelengths have been used to monitor the evolution of the main Yb and Tm excited states. We use an average rate equations model to decipher the relationships between the compositional constraints and size of these ultrasmall UCNPs and the luminescence kinetic parameters. Several rate constants of ETU and other depopulation processes involving the multiple states of the Tm3+ energy scaffold have been retrieved from the simultaneous fit of the recorded curves. Their values have been interpreted by considering bulk and surface quenching, radiative and multi-phonon relaxations, and ion-to-ion hopping. Energy transfer between Yb3+ and Tm3+ is mainly occurring within neighbor atoms. The importance of mismatches on multiphonon relaxations, ETUs, and back-transfers has also been highlighted. For these numerical modeling, it appears that changing the composition and synthesis conditions with the aim to improve a single-specific parameter could remain a major challenge as this modification would automatically impact other properties with immediate consequences on UCNP dynamics. KW - Nano KW - Particle KW - Synthesis KW - Shell KW - Fluorescence KW - Lifetime KW - Decay kinetics KW - Method KW - Modelling KW - Quality assurance KW - Energy transfer KW - Upconversation PY - 2024 DO - https://doi.org/10.1021/acs.jpcc.4c04969 VL - 128 IS - 44 SP - 18836 EP - 18848 PB - ACS Publications AN - OPUS4-61645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Götze, J. P. A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores N2 - The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects. KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Theory KW - Quantum yield KW - Mechanism KW - Quantum chemistry KW - Modelling KW - Aggregation KW - Lifetime KW - Single particle KW - Microscopy KW - Solid KW - Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531138 DO - https://doi.org/10.1039/d1cp02534a SP - 1 EP - 9 PB - Royal Society of Chemistry AN - OPUS4-53113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Soares, J. X. A1 - Wegner, Karl David A1 - Ribeiro, D. S. M. A1 - Melo, A. A1 - Häusler, I. A1 - Santos, J. L. M. A1 - Resch-Genger, Ute T1 - Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control N2 - In the blossoming field of Cd-free semiconductor quantum dots (QDs), ternary I–III–VI QDs have received increasing attention due to the ease of the environmentally friendly synthesis of high-quality materials in water, their high photoluminescence (PL) Quantum yields (QYs) in the red and near infrared (NIR) region, and their inherently low toxicity. Moreover, their oxygen-insensitive long PL lifetimes of up to several hundreds of nanoseconds close a gap for applications exploiting the compound-specific parameter PL lifetime. To overcome the lack of reproducible synthetic methodologies and to enable a design-based control of their PL properties, we assessed and modelled the synthesis of high-quality MPA-capped AgInS2/ZnS (AIS/ZnS) QDs. Systematically refined Parameters included reaction time, temperature, Ag:In ratio, S:In ratio, Zn:In ratio, MPA:In ratio, and pH using a design-of-experiment approach. Guidance for the optimization was provided by mathematical models developed for the application-relevant PL parameters, maximum PL wavelength, QY, and PL lifetime as well as the elemental composition in terms of Ag:In:Zn ratio. With these experimental data-based models, MPA:In and Ag:In ratios and pH values were identified as the most important synthesis parameters for PL Control and an insight into the connection of these parameters could be gained. Subsequently, the experimental conditions to synthetize QDs with tunable emission and high QY were predicted. The excellent agreement between the predicted and experimentally found PL features confirmed the reliability of our methodology for the rational design of high quality AIS/ZnS QDs with defined PL features. This approach can be straightforwardly extended to other ternary and quaternary QDs and to doped QDs. KW - Modelling KW - Nanoparticle KW - AIS KW - Semiconductor quantum dot KW - Design of experiment KW - Photoluminescence KW - Quantum yield KW - Surface chemistry KW - Synthesis KW - Lifetime PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510075 DO - https://doi.org/10.1007/s12274-020-2876-8 VL - 13 IS - 9 SP - 2438 EP - 2450 PB - Springer AN - OPUS4-51007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng T1 - Prediction of porosity formation in high power laser beam welding using physics informed machine learning framework N2 - The applications of the high-power laser beam welding process are often hindered by the occurrence of the porosity defect. However, an accurate prediction and an insight of the porosity formation are still challenging due to the highly nonlinear physics involved in the dynamic weld pool and keyhole behaviours. In this paper, the effects of relevant physical variables related to the porosity defect are evaluated by utilizing mechanistic modelling and experimental data within a physics-informed machine learning (PIML) framework. With a proper selection of the physical variables (features) in the aspects of keyhole stability, liquid metal flow and weld pool geometry, which correspondingly describes the bubble formation, bubble movement and bubble capture by the solidification front, the PIML shows great superiority in predicting the porosity ratio in the laser welding of aluminium in comparison with conventional ML model using welding parameters. The Shapley Additive Explanations analysis is employed to provide a hierarchical importance of the variables on the defect formation. T2 - 77th IIW Annual Assembly and International Conference CY - Rhodes, Greece DA - 07.07.2024 KW - Laser beam welding KW - Machine learning KW - Porosity KW - Modelling PY - 2024 AN - OPUS4-61610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie T1 - Standardization of MIC laboratory testing: with a special focus on corrosive methanogens N2 - Microbiologically influenced corrosion (MIC) is a highly unpredictable process involving a complex group of microorganisms, including sulfate-reducing bacteria and methanogens. Standard laboratory MIC testing using static serum bottle enrichments is an easy but limited method, offering poor resolution on the biomineralization process of corrosion products. An example of this is the presumed corrosion product siderite by corrosive methanogens (Mi-MIC). Previous publications reported siderite was the sole corrosion product of M. maripaludis using metal coupons incubated under stationary conditions. However, the formation of siderite is closely related to the surrounding environmental conditions, i.e. pH, CO2 concentration, flow and temperature. Thus, siderite as the sole corrosion product of Mi-MIC remain inconclusive and questionable. To study Mi-MIC effectively, a novel versatile multiport flow-column corrosion monitoring system (MFC) was developed. MFC allows sectional corrosion rate determination under flow conditions using different types of material, inoculum and packing material. MFC offers great flexibility, ease of operation and accurate corrosion measurements that can be combined with many other techniques. Using MFC, we studied multiple strains of methanogens and compared it with sulfate-reducing bacteria under neutral and low pH conditions. It was revealed by MFC that corrosive methanogens have equally high corrosion potential as sulfate-reducing bacteria. Additionally, siderite is not the dominant nor sole corrosion product of Mi-MIC. Thus, effective corrosion monitoring and establishing standard laboratory practices, i.e. incorporating MFC as part of regular testing process, will provide deeper understanding of MIC. This will allow further microbial electrophysiology understandings, contributing to effective mitigation strategy development. T2 - EUROPEAN MIC NETWORK WEBINAR CY - Online meeting DA - 19.05.2020 KW - MIC KW - Methanogen KW - FIB/SEM KW - Corrosion products KW - Microbiologically influenced corrosion KW - Flow Model KW - Modelling KW - Korrosion PY - 2020 AN - OPUS4-51554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Deland, Eric ED - Eibergen, N. ED - Poulassichidis, T. T1 - Novel Multiport Flow-Column Corrosion Monitoring System (MFC) Revealed High Corrosion Rates by Corrosive Methanogenic Archaea N2 - MFC was used to study the corrosiveness of iron-utilizing methanogen, Methanobacterium IM1 under flow conditions. Comparing against electrical SRM, Desulfovibrio ferrophilus IS5, results showed under standard mesophilic conditions, average corrosion rates of Methanobacterium IM1 was double that of SRM. The highest corrosion rate of Methanobacterium IM1 reached up to 0.60 mm/yr under neutral conditions, and severe pitting was observed on the iron surface. Furthermore, the corrosion products of Methanobacterium IM1 were characterized with TOF-SIM, FIB-SEM and EDX, and preliminary results revealed FeCO3 is not the only corrosion product of Mi-MIC, as previously reported. Under low pH conditions, the maximum corrosion rate of Methanobacterium IM1 reached 1.57 mm/yr, which resulted in severed deformity of the iron specimen. Additional comparisons using different types of incubation material were conducted to standardize MFC MIC testing. T2 - Corrosion 2021 CY - Online Meeting DA - 19.04.2021 KW - MIC KW - Microbiologically influenced corrosion KW - Biocorrosion KW - Hi-Tension KW - Environmental condition KW - Flow Model KW - Modelling KW - Korrosion PY - 2021 UR - https://my.nace.org/PaperTrail/Authors/Submission.aspx?id=2b6387be-7390-ea11-813a-005056a95a7c SP - Paper C2021-16303, 1 AN - OPUS4-52480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -