TY - JOUR A1 - Müller, Jan P. A1 - Götschel, S. A1 - Maierhofer, Christiane A1 - Weiser, M. T1 - Determining the Material Parameters for the Reconstruction of Defects in Carbon Fiber Reinforced Polymers from Data Measured by Flash Thermography N2 - Flash thermography is a fast and reliable non-destructive testing method for the investigation of defects in carbon fiber reinforced polymer (CFRP) materials. In this paper numerical simulations of transient thermography data are presented, calculated for a quasi-isotropic flat bottom hole sample. They are compared to experimental data. These simulations are one important step towards the quantitative reconstruction of a flaw by assessing thermographic data. The applied numerical model is based on the finite-element method, extended by a semi-analytical treatment of the boundary of the sample, which is heated by the flash light. A crucial part for a reliable numerical model is the prior determination of the material parameters of the specimen as well as of the experimental parameters of the set-up. The material parameters in plane and in depth diffusivity are measured using laser line excitation. In addition, the absorption and heat transfer process of the first layers is investigated using an IR microscopic lens. The performance of the two distinct components of CFRP during heating – epoxy resin and carbon fibers – is examined. Finally, the material parameters are optimized by variation and comparison of the simulation results to the experimental data. The optimized parameters are compared to the measured ones and further methods to ensure precise material parameter measurements are discussed. T2 - 43rd Review of Progress in Quantitative Nondestructive Evaluation CY - Atlanta, GA, USA DA - 17.07.2016 KW - Aktive Thermografie KW - Thermische Diffusivität KW - Zerstörungsfreie Prüfung KW - Kohlenstofffaserverstärkter Kunststoff KW - CFK KW - Active thermography KW - Thermal diffusivity KW - Non-Destructive testing KW - Carbon fiber reinforced polymer KW - CFRP PY - 2017 SN - 978-0-7354-1474-7 U6 - https://doi.org/10.1063/1.4974671 SN - 0094-243X VL - 1806 IS - 1 SP - UNSP 100006-1 EP - 11 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-39332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Krome, Fabian A1 - Prager, Jens T1 - Effiziente Modellierung von geführten Wellen mit der Scaled Boundary Finite Elemente Methode und deren Anwendung für Composite-Druckbehälter N2 - Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die speziell für Modellierung von geführten Wellen weiterentwickelt und optimiert wurde. Da nur den Rand der Rechendomäne diskretisiert wird, hat die SBFEM einen geringen Rechenaufwand. In diesem Beitrag wird die SBFEM benutzt, um die Ausbreitung geführter Wellen in einer Metall-Faserverbund-Werkstoffstruktur zu analysieren. Mittels der SBFEM ist es möglich, verschiede Fehlertypen, z.B. Ermüdungsrisse, Poren, Delaminationen, Korrosion, in das numerische Modell zu integrieren und damit Defekt-Mode-Wechselwirkung zu analysieren. Die Ergebnisse wurden für die Entwicklung einer Methode zur Zustandsüberwachung von Composite-Druckbehältern verwendet. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Wasserstoffspeicher KW - Automobilindustrie KW - Kohlenstofffaserverstärkter Kunststoff KW - Hybrid Materialien PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-449797 SP - 1 EP - 4 AN - OPUS4-44979 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Krome, Fabian A1 - Prager, Jens T1 - Effiziente Modellierung von geführten Wellen mit der Scaled Boundary Finite Elemente Methode und deren Anwendung für Composite-Druckbehälter N2 - Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die speziell für Modellierung von geführten Wellen weiterentwickelt und optimiert wurde. Da nur den Rand der Rechendomäne diskretisiert wird, hat die SBFEM einen geringen Rechenaufwand. In diesem Beitrag wird die SBFEM benutzt, um die Ausbreitung geführter Wellen in einer Metall-Faserverbund-Werkstoffstruktur zu analysieren. Mittels der SBFEM ist es möglich, verschiede Fehlertypen, z.B. Ermüdungsrisse, Poren, Delaminationen, Korrosion, in das numerische Modell zu integrieren und damit Defekt-Mode-Wechselwirkung zu analysieren. Die Ergebnisse wurden für die Entwicklung einer Methode zur Zustandsüberwachung von Composite-Druckbehältern verwendet. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Wasserstoffspeicher KW - Automobilindustrie KW - Kohlenstofffaserverstärkter Kunststoff KW - Hybrid Materialien PY - 2018 AN - OPUS4-44980 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -