TY - CONF A1 - Pauw, Brian Richard T1 - Basics and applications of good SAXS: Quantifying the fine structure of lots of materials N2 - In contrast to the crisp, clear images you can get from electron microscopy, small-angle X-ray scattering (SAXS) patterns are rather featureless. These patterns, however, contain averaged structural information of all of the finest material structures that were illuminated by the X-ray beam. With careful and precise investigation, and supplementary information from complementary techniques, this bulk material structure can be quantified to reveal structural information spanning four or even five decades in size. Additionally, while the data correction and analysis is complex, sample preparation is very straightforward, also allowing for in-situ and operando measurements to be performed without breaking a sweat. In the right hands, then, this technique can be the most powerful tool in your analytical arsenal. T2 - OpTecBB webinar within the scope of the focus area Optical Analytics CY - Online meeting DA - 27.05.2020 KW - Small-angle scattering KW - Introduction KW - Application KW - Saxs KW - Nanomaterials KW - Nanostructure PY - 2020 UR - https://www.youtube.com/watch?v=mXkYL3dSsTY UR - https://optecbb.de/veranstaltungen/veranstaltung/webinar-basics-and-applications-of-good-saxs-1238/ AN - OPUS4-50879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Small-angle scattering for everyone: How to unlock the power of this ancient technique N2 - The obscure, yet fundamental technique of scattering can unlock essential information on the fine structure of materials. For you, it can help you understand how your batteries charge, how squid backbones work, or how hundreds of small variations in your syntheses affect your samples. As a nondestructive technique, it also measures your materials *in situ* or operando, as you pull it, heat it, electrify it, or align it one way or another. Scattering can be done using light, X-rays, neutrons, and even electrons, giving you the choice on which probe is best for you. The only downside? Scattering will always remain a complicated technique to do right. The technique gives you only one piece of information: the length distribution of density in your sample. How you interpret this (rather abstract) piece of information is up to you and your samples. Unlike microscopy, where the real-space image can be interpreted almost intuitively and artefacts are easier to spot, in scattering you cannot always easily identify artefacts. Therefore, the only way to do scattering experiments correctly is through rigour and care. For those of us with that particular eccentricity, seeing the rigour and care pay off is exhilarating, and opens the door to a life of happiness and excitement. This lecture will introduce scattering (in particular using X-rays and neutrons), what it is, what you can (and cannot) get out of it, and how to approach your scattering experiment. Regarding the experimental section, it will discuss the five parts that make up a successful scattering experiment based on real-life examples: Preparation: which and how you prepare your samples affects what you can get out of the interpretation Measurement: The machine design and your measurement choices dictates the final quality of your data Correction: Obtaining trustworthy scattering curves will greatly improve the speed and quality of your analysis. Analysis: Do you linearize, use generic scattering models, perform classical least-squares fitting, play with Monte-Carlo analysis or transform your data.. Some tips to help you make a choice. Interpretation: what does the analysis of all your samples tell you? Can you fit the puzzle pieces together to form a piece of knowledge? For further information, please feel free to explore the https://lookingatnothing.com/ weblog, the https://youtube.com/drheaddamage video channel, or by asking me in person or by email for specific questions at brian.pauw@bam.de . Some introductory reading can be found in the following papers: Pauw, B. R. (2013): Everything SAXS: small-angle scattering pattern collection and correction. _J. Phys.: Condens. Matter_ 25: 383201. DOI: [10.1088/0953-8984/25/38/383201](http://dx.doi.org/10.1088/0953-8984/25/38/383201) B. R. Pauw, A. J. Smith, T. Snow, N. J. Terrill, A. F. Thünemann, (2017): The modular SAXS data correction sequence for solids and dispersions, _Journal of Applied Crystallography_, 50: 1800–1811, DOI: [10.1107/S1600576717015096](https://doi.org/10.1107/S1600576717015096) G. J. Smales, B. R. Pauw (2021): The MOUSE project: a meticulous approach for obtaining traceable, wide-range X-ray scattering information. _Journal of instrumentation_ 16 (6) P06034. DOI: [10.1088/1748-0221/16/06/P06034](https://doi.org/10.1088/1748-0221/16/06/P06034) T2 - SAS School at the XIX International Small Angle Scattering Conference CY - Taipei, Taiwan DA - 02.11.2024 KW - X-ray scattering KW - Neutron scattering KW - Scattering KW - X-ray KW - Neutron KW - Introduction KW - Methodology PY - 2024 AN - OPUS4-61623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - What’s that beyond the grasslands? Expanding your world view via wide-range X-ray scattering N2 - This talk introduces the expanded view that comes from wide-range X-ray scattering investigations. Compared to X-ray diffraction studies alone, the additional angular range of this technique provides information on the larger structural dimensions present in your samples. This allows for the extraction of information on the size and size distribution of nanostructural components, such as nanoparticles, nanovoids, and any other structure exhibiting an electron density contrast. The talk introduces the technique, the MOUSE instrument used for these investigations, and provides several real-world examples of its uses. The audience is invited to choose which examples captures their interest from a range of options, in the latter segment of the talk. T2 - ECS8: European Crystallography School 2023 CY - Berlin, Germany DA - 18.06.2023 KW - X-ray scattering KW - Introduction KW - Fourier transforms KW - Nanostructure investigation KW - Instrument automation KW - MOUSE PY - 2023 AN - OPUS4-57769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Better with Scattering Part 1: Fundamentals of X-ray scattering N2 - Today's speaker is a young scientist whose research on all aspects of small-angle scattering has taken him from his birthplace in Netherlands, to Denmark, Japan and now Germany. His research has led to a new method and software for scattering pattern analysis, a comprehensive set of data corrections together with the Diamond Light Source, and a new ultra-SAXS plug-in instrument. For the last few years, he has been working on a comprehensive and universal methodology to get high-quality X-ray scattering measurements for any sample, using his new instrument at the institute. This instrument has now been heavily modified both in hardware and software, so that it can deliver better data. These developments are always driven by interesting collaborations with materials researchers and other scientists. As a joint member he has published works on a wide variety of materials, including self-assembled structures in liquids, composite materials and porous carbon catalysts. He has also been very active in outreach, for example by co-organizing an online lecture series called ‘#the Light Stuff’ on scattering and diffraction, running the ‘looking at nothing’ weblog, hosting a yearly introductory scattering course, and he has many scattering-related lectures available on YouTube. Our distinguished speaker is Dr. Brian Richard Pauw from the Federal Institute for Materials Research and Testing in Germany. I proudly invite Dr. Pauw to begin his talk T2 - The first training course on the principles & application of X-ray scattering in nanomaterials CY - Online meeting DA - 28.04.2021 KW - X-ray scattering KW - Methodology KW - MOUSE KW - Introduction KW - Theory PY - 2021 AN - OPUS4-53275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Pauw, Brian Richard T1 - Just a minute: X-ray scattering N2 - An extremely brief summary of what X-ray scattering can do for you (X-ray scattering encompasses small-angle X-ray scattering (SAXS), and wide-angle X-ray scattering (WAXS/XRD), amongst others). See my other videos for more detailed explanations on sample selection, data correction, data analysis, etc. KW - X-ray scattering KW - Introduction KW - Materials science KW - Nanostructure investigation KW - MOUSE PY - 2022 UR - https://www.youtube.com/watch?v=jWWNQyaCTHA DO - https://doi.org/10.26272/opus4-55768 PB - YouTube, LLC CY - San Bruno, CA, USA AN - OPUS4-55768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS N2 - Introduction keynote for the "Small Angle Scattering Training School 2019", introducing a wide range of aspects around small-angle scattering. T2 - Small Angle Scattering Training School 2019 CY - Diamond Light Source, Didcot, UK DA - 04.06.2019 KW - X-ray scattering KW - Nanostructure KW - Introduction KW - Practical aspects PY - 2019 AN - OPUS4-48191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -