TY - CONF A1 - Ewert, Uwe A1 - Martin Tschaikner, Martin A1 - Hohendorf, Stefan A1 - Bellon, Carsten A1 - Haith, M. I. A1 - Huthwaite, P. A1 - Lowe, M. J. S. T1 - Corrosion monitoring with tangential radiography and limited view computed tomography T2 - 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation N2 - Accurate and reliable detection of subsea Pipeline corrosion is required in order to verify the integrity of the pipeline. A laboratory trial was conducted with a representative pipe sample. The accurate measurement of the wall thickness and corrosion was performed with high energy X-rays and a digital detector array. A 7.5 MV betatron was used to penetrate a stepped pipe and a welded test pipe of 3 m length and 327 mm outer diameter, with different artificial corrosion areas in the 24 mm thick steel wall. The radiographs were taken with a 40 x 40 cm² digital detector array, which was not large enough to cover the complete pipe diameter after magnification. A C-arm based geometry was tested to evaluate the potential for automated inspection in field. The primary goal was the accurate measurement of wall thickness conforming to the standard. The same geometry was used to explore the ability of a C-arm based scanner in asymmetric mode for computed tomography (CT) measurement, taking projections covering only two thirds of the pipe diameter. The technique was optimized with the modelling Software aRTist. A full volume of the pipe was reconstructed and the CT data set was used for reverse engineering, providing a CAD file for further aRTist simulations to explore the technique for subsea inspections. T2 - 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Minneapolis, Minnesota, USA DA - 26.07.2015 KW - Corrosion monitoring KW - Tangential radiography KW - Computed tomography PY - 2016 SN - 978-0-7354-1353-5 DO - https://doi.org/10.1063/1.4940574 SN - 0094-243X VL - 1706 SP - 110003-1 EP - 110003-8 PB - AIP Publishing AN - OPUS4-37555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hampel, Marco A1 - Schenderlein, Matthias A1 - Schary, Christian A1 - Dimper, Matthias A1 - Özcan Sandikcioglu, Özlem T1 - Efficient detection of localized corrosion processes on stainless steel by means of scanning electrochemical microscopy (SECM) using a multi-electrode approach JF - Electrochemistry Communications N2 - High resolution analysis of corrosion processes on stainless steels is a challenging task. The application of local electrochemical techniques such as scanning electrochemical microscopy (SECM) has opened new possibilities for the detection of corrosion products and activity on metallic surfaces. However, due to its stochastic nature, the analysis of pitting corrosion requires being at the right place at the right time. Scanning over large areas at a high resolution not only leads to long scan durations but also leaves many short-lived processes undetected. In this paper we present the combined automated operation of SECM and wire multi-electrodes connected to a multi-electrode analyzer (MMA). The inter-electrode currents between 25 wire electrodes connected via zero resistance ammeters (ZRA) are measured by the MMA at open circuit potential (OCP) and the electrodes reporting anodic currents are detected automatically to be analyzed by means of SECM. The results demonstrate the successful application of this methodology for the detection of unstable and stable pitting processes on 304 stainless steel in a corrosive aqueous environment. KW - Scanning electrochemical microscope (SECM) KW - Localised corrosion KW - Corrosion monitoring PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478646 DO - https://doi.org/10.1016/j.elecom.2019.02.019 VL - 101 SP - 52 EP - 55 PB - Elsevier B.V. AN - OPUS4-47864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Wurzler, Nina A1 - Hampel, Marco A1 - Witt, Julia A1 - Schenderlein, Matthias T1 - In situ imaging of corrosion processes N2 - The presentation summarizes our recent results on the coupled electrochemical methods for high resolution corrosion studies. The combination of Scanning Electrochemical Microscopy (SECM) and multielectrode (MMA) based real-time corrosion monitoring was presented as a new method for achieving high time resolution in local electrochemical analysis. Correlative imaging by means of Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) was demonstrated as a tool for the investigation of local corrosion processes initiated by the intermetallic particles (IMPs) on AA2024-T3 aluminium alloy. T2 - BAM-IfW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - MIC KW - Atomic Force Microscopy (AFM) KW - Corrosion monitoring KW - Corrosion PY - 2019 AN - OPUS4-50291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Schenderlein, Matthias A1 - Hampel, Marco A1 - Almalla, Ahed T1 - Coupled electrochemical, microscopic and spectroscopic techniques for the analysis of local corrosion and mic processes N2 - Summary of the research topics of the division 6.2 and recent results T2 - HZDR-IRE Institutscolloquium CY - Dresden, Germany DA - 24.09.2019 KW - MIC KW - Localised corrosion KW - Corrosion monitoring KW - Biofilmbildung KW - Atomic Force Microscopy (AFM) PY - 2019 AN - OPUS4-50295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -