TY - BOOK A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Dynamics ooof Composite Materials N2 - Historically, to tune the properties of a polymer or more general soft matter systems by a second phase is not a new concept and dates back to the 40s of the last century. Beside some successes, the improvement of the properties remained somehow limited. The expectations of the enhancement of the properties of composites changed by the developments of Toyota Central research in the 1990s. It was shown that the incorporation of 5 vol% exfoliated layers of a clay system into a polymer leads to a strong improvement of the mechanical and thermal properties. This discovery stimulated a broad research interest of both fundamental and applied character. Today, polymer-based nanocomposites have reached a billion-dollar global market. The corresponding applications span from components for transportation, commodity plastics with enhanced barrier and/or flame retardancy characteristics, to polymers with electrical properties for shielding, electronics, sensors, and solar cells as well as to live science. Important fields are filled rubbers, reinforced thermoplastics, or thermosets for automotive, aircraft/space and marine industries, but also membranes for separation processes as well as barrier layers, just to mention a few. For a variety of applications, the molecular mobility in nanocomposites is of great importance. This concerns the molecular mobility needed to form a percolating filler network in rubbers used in tires or in composites employed in electric shielding applications. In general, it is also essential for processing polymer-based nanocomposites. Furthermore, separation processes in composite materials for membranes require a certain molecular mobility. This also concern nanodielectrics used in electrical applications or sensors where the mobility of charge carriers can be related to the fluctuations of molecular groups etc. Finally, the molecular mobility can be taken as probe for structure on a molecular scale. Broadband dielectric spectroscopy is a powerful tool to investigate the molecular mobility in polymer systems. It is due to the extremely broad frequency and sensitivity range that can be covered by this technique. Information about localized and cooperative molecular fluctuations, polarization effects at interfaces, as well as charge transport processes can be deduced. Therefore, this book focusses on broadband dielectric spectroscopy of composite materials. Moreover, the dielectric studies are accompanied by mechanical spectroscopy, advanced calorimetry, NMR techniques, as well as transmission electron microscopy and X-ray scattering investigations. Besides a brief introduction to (nano)composites, the book aims to address fundamental aspects of the molecular mobility in this innovative group of materials. Selected examples with scientific interest and some cases with high industrial impact were chosen. Due to the breadth of the subject, unfortunately not all topics could be addressed in detail, such as processing for instance. Berlin, Andreas Schönhals July 2021 Paulina Szymoniak KW - Composite materials KW - Nanocomposites PY - 2022 SN - 978-3-030-89722-2 SN - 978-3-030-89723-9 U6 - https://doi.org/10.1007/978-3-030-89723-9 VL - 2022 SP - 1 EP - 375 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-54538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Onel, Yener A1 - Cooper, R. C. A1 - Lange, A. A1 - Watkins, T. R. A1 - Shyam, A. T1 - Young's modulus and Poisson's ratio changes due to machining in porous microcracked cordierite N2 - Microstructural changes in porous cordierite caused by machining were characterized using microtensile testing, X-ray computed tomography, and scanning electron microscopy. Young's moduli and Poisson's ratios were determined on similar to 215- to 380-mu m-thick machined samples by combining digital image correlation and microtensile loading. The results provide evidence for an increase in microcrack density and decrease of Young's modulus due to machining of the thin samples extracted from diesel particulate filter honeycombs. This result is in contrast to the known effect of machining on the strength distribution of bulk, monolithic ceramics. KW - Stress KW - Beta-Eucryptite KW - Brittle materials KW - Ceramic materials KW - Thermal-Expansion KW - Fracture-Toughness KW - Composite materials KW - Differential scheme KW - Elastic-moduli KW - Representative volume element PY - 2016 U6 - https://doi.org/10.1007/s10853-016-0209-9 SN - 0022-2461 VL - 51 IS - 21 SP - 9749 EP - 9760 PB - Springer, NY, USA AN - OPUS4-37867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nellesen, J. A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hentschel, M. P. A1 - Anar, N. B. A1 - Soppa, E. A1 - Tillmann, W. A1 - Bruno, Giovanni T1 - In situ analysis of damage evolution in an Al/Al2O3 MMC under tensile load by synchrotron X-ray refraction imaging N2 - The in situ analysis of the damage evolution in a metal Matrix composite (MMC) using synchrotron X-ray refraction radiography (SXRR) is presented. The investigated material is an Al alloy (6061)/10 vol% Al2O3 MMC after T6 heat treatment. In an interrupted tensile test the gauge section of dog bone-shaped specimens is imaged in different states of tensile loading. On the basis of the SXRR images, the relative change of the specific surface (proportional to the amount of damage) in the course of tensile loading was analyzed. It could be shown that the damage can be detected by SXRR already at a stage of tensile loading, in which no Observation of damage is possible with radiographic absorption-based imaging methods. Moreover, the quantitative analysis of the SXRR images reveals that the amount of damage increases homogeneously by an average of 25% with respect to the Initial state. To corroborate the experimental findings, the damage distribution was imaged in 3D after the final tensile loading by synchrotron X-ray refraction computed tomography (SXRCT) and absorption-based synchrotron X-ray computed tomography (SXCT). It could be evidenced that defects and damages cause pronounced indications in the SXRCT images. KW - Composite materials KW - Defects KW - Micro analysis PY - 2018 U6 - https://doi.org/10.1007/s10853-017-1957-x SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 8 SP - 6021 EP - 6032 PB - Springer US AN - OPUS4-44241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Structural health monitoring of composite pressure vessels using guided ultrasonic waves N2 - Composite pressure vessels are important components in the storage of gases under high pressure. Among others, a common type of pressure vessel is made of a metal liner overwrapped with a fibre-reinforced plastic material. Conventional hydrostatic tests, used to assess the integrity of pressure vessels, may overstress the material and thus reduce the remaining lifetime of the tested component. Therefore, a truly non-destructive structural health monitoring (SHM) system would not only ensure a safer usage and extended lifetime, but also remove the necessity for periodic inspection and the testing of pressure vessels. The authors propose the use of guided ultrasonic waves, which have the potential to detect the main damage types, such as cracking in the metal liner, fibre breaks and composite matrix delamination. For the design of such an SHM system, multimodal ultrasonic wave propagation and defect-mode interaction must be fully understood. In this paper, simulation results obtained by means of finite element modelling (FEM) are presented. Based on the findings, suggestions are made regarding appropriate wave modes and their interaction with different flaw types, as well as the necessary excitation and suitable sensor configurations. Finally, a first approach for a reliable SHM system for composite pressure vessels is suggested. T2 - First World Congress on Condition Monitoring (WCCM) CY - London, UK DA - 13.06.2017 KW - Composite materials KW - Pressure tanks KW - Condition monitoring PY - 2018 U6 - https://doi.org/10.1784/insi.2018.60.3.139 SN - 1354-2575 VL - 60 IS - 3 SP - 139 EP - 144 PB - The British Institute of Non-Destructive Testing CY - Northampton, UK AN - OPUS4-44605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Boller, Ch. A1 - Mueller, Bernd R. A1 - Heckel, Thomas A1 - Starke, P. A1 - Gohlke, Daniel A1 - Venkat, R. S. A1 - Bruno, Giovanni T1 - Nonlinearities based inverse approach for the characterisation of the damage evaluation process in very high cycle fatigued CFRP specimens N2 - This paper focuses on the aspect on how damage evolution processes in composite materials and structures including matrix fracture, delamination, fibre-matrix debonding, and fibre fracture can be detected by taking advantage of the material’s inherit mechanical properties. These properties can be described on the basis of non-linear mechanical phenomena measurable as an inert frequency response signal. The approach is proposed as a means for residual life structural assessment specifically in the context of VHCF. T2 - The Seventh International Conference on Very High Cycle Fatigue - VHCF7 CY - Dresden, Germany DA - 03.07.2017 KW - Composite materials KW - Damage KW - Non-destructive testing KW - Fatigue KW - Structural simulation KW - Non-linear vibration PY - 2017 VL - 2017 SP - 1 EP - 8 PB - DVM AN - OPUS4-41102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Structural health monitoring of composite pressure vessels using guided ultrasonic waves N2 - Composite pressure vessels are important components for storing gases under high pressure. Beside others, a common type of pressure vessel is made of a metal liner overwrapped with a fibre reinforced plastic material. Conventional hydrostatic tests, used to assess the integrity of pressure vessels, may overstress the material, and thus, may reduce the remaining life-time of the tested component. Therefore, a truly nondestructive structural health monitoring (SHM) system would not only allow to ensure a safer usage and extended life-time, but also to exclude the necessity of the periodic inspection and testing of pressure vessels. We propose to use guided ultrasonic waves which have a potential to detect the main damage types such as cracking in the metal liner, fibre breaks and composite Matrix delamination. For designing such a SHM system, the multimodal ultrasonic wave propagation and the defect-mode interaction must be fully understood. In this contribution, we present simulation results obtained by means of finite element modelling. Based on the findings, suggestions about appropriate wave modes, their interaction with different flaw types as well as the necessary excitation and suitable sensor configuration are made. Finally, we suggest a first approach of a reliable SHM system for composite pressure vessels. T2 - First World Congress on Condition Monitoring (WCCM) CY - London, UK DA - 13.06.2017 KW - Composite materials KW - Simulations KW - Ultrasonic testing PY - 2017 SP - 1 EP - 12 AN - OPUS4-40678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Structural health monitoring of composite pressure vessels using guided ultrasonic waves N2 - Composite pressure vessels are important components for storing gases under high pressure. Beside others, a common type of pressure vessel is made of a metal liner overwrapped with a fibre reinforced plastic material. Conventional hydrostatic tests, used to assess the integrity of pressure vessels, may overstress the material, and thus, may reduce the remaining life-time of the tested component. Therefore, a truly nondestructive structural health monitoring (SHM) system would not only allow to ensure a safer usage and extended life-time, but also to exclude the necessity of the periodic inspection and testing of pressure vessels. We propose to use guided ultrasonic waves which have a potential to detect the main damage types such as cracking in the metal liner, fibre breaks and composite Matrix delamination. For designing such a SHM system, the multimodal ultrasonic wave propagation and the defect-mode interaction must be fully understood. In this contribution, we present simulation results obtained by means of finite element modelling. Based on the findings, suggestions about appropriate wave modes, their interaction with different flaw types as well as the necessary excitation and suitable sensor configuration are made. Finally, we suggest a first approach of a reliable SHM system for composite pressure vessels. T2 - First World Congress on Condition Monitoring (WCCM) CY - London, UK DA - 13.06.2017 KW - Composite materials KW - Simulations KW - Ultrasonic testing PY - 2017 AN - OPUS4-40679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -