TY - JOUR A1 - Madkour, Sherif A. A1 - Gawek, Marcel A1 - Penner, P. A1 - Paneff, F. A1 - Zhang, X. A1 - Gölzhäuser, A. A1 - Schönhals, Andreas T1 - Can Polymers be Irreversibly Adsorbed on Carbon Nanomembranes? A Combined XPS, AFM, and Broadband Dielectric Spectroscopy Study N2 - Carbon nanomembranes are synthetic two-dimensional sheets with nanometer thickness, macroscopic lateral dimensions, and high structural homogeneity. They have great application potential in various branches of nanotechnology. Because of their full carbon structure, it is not clear whether macromolecules like poly(methyl methacrylate) (PMMA) can be irreversibly adsorbed on their surface. Here, irreversible adsorption means that the polymer chains cannot be removed by a leaching process, which is assumed in technological transfer processes. However, if polar defects are present on the carbon nanomembranes (CNMs), it may occur that polymers can be irreversibly adsorbed. To address this question, PMMA was spin-coated on top of CNMs, annealed for a specific time at different temperatures, and then tried to be removed by a acetone treatment in a leaching approach. The samples were investigated in detail by atomic force microscopy, X-ray photoelectron spectroscopy, and broadband dielectric spectroscopy, where the latter method has been applied to CNMs for the first time. Unambiguously, it was shown that PMMA can be adsorbed on the surface of CNMs after annealing the sample above the glasstransition temperature of PMMA. The general occurrence of polar defects on the surface of CNMs and the adsorption of polymers open opportunities for advanced innovative hybrid materials combining the properties of the CNM with those of the polymer. KW - Carbon Nanomembranes KW - Irreversible adsorption KW - Broadband dielectric spectroscopy KW - XPS spctroscopy KW - Atomic force microscopy PY - 2022 U6 - https://doi.org/10.1021/acsapm.2c01320 SN - 2637-6105 VL - 4 IS - 11 SP - 8377 EP - 8385 PB - ACS AN - OPUS4-56067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Krause, Christina A1 - Huber, P. A1 - Schönhals, Andreas T1 - Multiple glassy dynamics of a homologous series of triphenylene-based columnar liquid crystals – A study by broadband dielectric spectroscopy and advanced calorimetry N2 - Hexakis(n-alkyloxy)triphenylene) (HATn) consisting of an aromatic triphenylene core and alkyl side chains are model discotic liquid crystal (DLC) systems forming a columnar mesophase. In the mesophase, the molecules of HATn self-assemble in columns, which has one-dimensional high charge carrier mobility along the columns. Here, a homologous series of HATn with different length of the alkyl chain (n = 5,6,8,10,12) is investigated using differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS) and advanced calorimetric techniques including fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). The investigation of the phase behavior was done utilizing DSC experiments and the influence of the alkyl chain length on the phase behavior was revealed. By the dielectric investigations probing the molecular mobility, a c-relaxation due to localized fluctuations as well as two glassy dynamics, the acore- and aalkyl-relaxation, were observed in the temperature range of the plastic crystalline phase. Moreover, the observed glassy dynamics were further studied employing advanced calorimetry. All observed relaxation processes are attributed to the possible specific molecular fluctuations and discussed in detail. From the results a transition at around n = 8 from a rigid constrained (n = 5,6) to a softer system (n = 10,12) was revealed with increasing alkyl chain length. A counterbalance of two competing effects of a polyethylene-like behavior of the alkyl chains in the intercolumnar domains and self-organized confinement is discussed in the context of a hindered glass transition. KW - Discotic liquid crystals KW - Broadband dielectric spectroscopy KW - Advanced calorimetry PY - 2022 U6 - https://doi.org/10.1016/j.molliq.2022.119212 VL - 358 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-54721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Smales, Glen Jacob A1 - Henning, S. A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Calorimetric and Dielectric Investigations of Epoxy-Based Nanocomposites with Halloysite Nanotubes as Nanofillers N2 - Epoxy nanocomposites are promising materials for industrial applications (i.e., aerospace, marine and automotive industry) due to their extraordinary mechanical and thermal properties. Here, the effect of hollow halloysite nanotubes (HNT) on an epoxy matrix (Ep) was the focus of the study. The structure and molecular mobility of the nanocomposites were investigated using a combination of X-ray scattering, calorimetry (differential (DSC) and fast scanning calorimetry (FSC)) and dielectric spectroscopy. Additionally, the effect of surface modification of HNT (polydopamine (PDA) and Fe(OH)3 nanodots) was considered. For Ep/HNT, the glass transition temperature (Tg) is was de-creased due to a nanoparticle-related decrease of the crosslinking density. For the modified system, Ep/m-HNT, the surface modification resulted in enhanced filler–matrix interactions leading to higher Tg values than the pure epoxy in some cases. For Ep/m-HNT, the amount of interface formed between the nanoparticles and the matrix ranged from 5% to 15%. Through BDS measurements, localized fluctuations were detected as a β- and γ-relaxation, related to rotational fluctuations of phenyl rings and local reorientations of unreacted components. A combination of calorimetry and BDS dielectric spectroscopy revealed a dynamic and structural heterogeneity of the matrix, as confirmed by two glassy dynamics in both systems, related to regions with different crosslinking densities. KW - Rigid amorphous fraction KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-526668 VL - 13 IS - 10 SP - 1634 PB - MDPI AN - OPUS4-52666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Schönhals, Andreas T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy-based Materials N2 - This work deals with an in-depth comparative investigation of the structure, molecular mobility and vitrification kinetics of three bisphenol A diglycidyl ether (DGEBA)-based materials with different nanofillers: taurine-modified layered double hydroxide (T-LDH) and halloysite nanotubes (HNTs). The chosen methodology comprises I) small – and wide – angle X-ray scattering (SAXS/WAXS) II) calorimetry in the forms of a) conventional DSC and b) static fast scanning calorimetry (FSC), III) broadband dielectric spectroscopy (BDS), as well as IV) specific heat spectroscopy in the forms of a) temperature modulated DSC, and b) temperature modulated FSC. T2 - Abteilungsseminar 6. - FB 6.6 CY - Online meeting DA - 06.05.2021 KW - Broadband dielectric spectroscopy KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Rigid amorphous fraction KW - Flash DSC PY - 2021 AN - OPUS4-52697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Szymoniak, Paulina A1 - Qu, Xintong A1 - Schönhals, Andreas A1 - Sturm, Heinz ED - Sinapius, M. ED - Ziegmann, G. T1 - Characterization of Polymer Nanocomposites N2 - The complex effect of nanoparticles on an epoxy-based and anhydride cured DGEBA/Boehmite nanocomposite with different particle concentrations is considered in this chapter. A combination of X-ray scattering, calorimetry (fast scanning and temperature modulated calorimetry) and dielectric spectroscopy was employed to characterize the structure, vitrification kinetics and the molecular dynamics of the nanocomposites. Firstly, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking density, indicated by two separate dynamic glass transitions. Moreover, the glass transition temperature decreases with increasing nanoparticle concentration, as a result of changes in the crosslinking density. In addition, it was shown that the incorporation of nanoparticles can result in simultaneous increase in the number of mobile segments for low nanoparticle concentrations and on the other hand, for higher loading degrees the number of mobile segments decreases, due to the formation of an immobilized interphase. KW - Rigid amorphous fraction KW - Epoxy nanocomposites KW - X-ray scattering KW - Differential scanning calorimetry KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2021 U6 - https://doi.org/10.1007/978-3-030-68523-2_4 SP - 55 EP - 77 PB - Springer Nature AN - OPUS4-52698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Dielectric and thermal relaxation behavior of ultra-thin films of poly(vinyl methyl ether) – evidence of an adsorbed layer N2 - Despite the many controversial discussions about the nanometric confinement effect on the properties of ultra-thin films, much remain not understood and/or experimentally unproven. Here, a combination of Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) employing AC nanochip calorimetry were utilized to investigate the glassy dynamics of ultra-thin films of a low MW Poly (vinyl methyl ether) (PVME) (thicknesses: 7 nm – 160 nm). For BDS measurements, a recently developed nano-structured electrode sample arrangement is employed; where ultra-thin films are spin-coated on an ultra-flat highly conductive silicon wafer, sandwiched between a wafer with nanostructured SiO2 nano-spacers with heights between 35 nm and 70 nm. For films with thicknesses up to 50 nm, BDS measurements showed two relaxation processes, which can be analyzed for these film thicknesses in details. The process located at higher frequencies coincidence in both, its position and temperature dependence, with the -relaxation of bulk PVME and is therefore assigned to the -relaxation of a bulk-like layer. The temperature dependence of the relaxation rate of this process in independent of film thickness. This is further confirmed by the SHS investigations, which superimpose in its temperature dependence with the BDS results; independent of film thickness. The second process is located at lower frequencies, where it shows a different temperature dependence and ascribed to the relaxation of polymer segments adsorbed at the substrate. The interaction of PVME with SiO2 was further confirmed by contact angle investigations. This adsorbed layer further undergoes a confinement effect that results in a lower Vogel temperature than that of the bulk-like layer. A detailed analysis of the dielectric strengths of both processes reveals that the thickness of the adsorbed layer decreases with increasing temperature, while that of the bulk-like layer increases. As a main conclusion, BDS showed that the glassy dynamics of the bulk-like and the adsorbed layer are thickness independent, which is in agreement with the SHS results. To our knowledge, this is the first probing of the segmental dynamics of an adsorbed layer in ultrathin films. T2 - 9th International Conference on Broadband Dielectric Spectroscopy and its Applications CY - Pisa, Italy DA - 11.09.2016 KW - Ultra-thin films KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy PY - 2016 AN - OPUS4-37528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Lohstroh, Wibke A1 - Zamponi, Michaela A1 - Zorn, R. A1 - Frick, Bernhard T1 - Neutron and dielectric spectroscopy - taking advantage of the strengths of each technique in confinement studies: Vibrational and molecular dynamics of nanoconfined liquid crystals N2 - The effect of a nanometre confinement on the molecular dynamics of liquid crystals was studied by broadband dielectric and neutron spectroscopy. As confining host the molecular sieve Al-MCM-41 (Si/Al=60) with a mean pore diameter of 3 nm was selected. As guest the liquid crystals 8CB and E7 were chosen where the latter does not crystallize but undergoes a glass transition forming a nematic glass. Dielectric spectroscopy shows that for the confined systems one relaxation process is observed. Ist characteristic relaxation time is much lower compared to that of the bulk. No signature of the Phase transition characteristics of the bulk liquid crystal is detected. The temperature dependence of the relaxation time of this relaxation process has to be described by the Vogel-Fulcher-Tammann equation and thus shows similarities to glassy dynamics. The vibrational density of states measured by neutron spectroscopy (IN6, ILL; TOFTOF, MLZ) Shows excess contributions with respect to the Debye density of states (boson peak). For the confined systems the low frequency contributions of the boson peak are suppressed, an effect which is also found for conventional glass forming systems. In addition elastic scans were carried out at the backscattering spectrometer (BS) IN10 at ILL. Such measurements provide an overview about the temperature dependence of the microscopic dynamics. Assuming a Gaussian form for the elastically scattered intensities the effective mean square displacement was calculated. For the nanoconfined samples the mean square displacement is strongly reduced in comparison to the bulk. Also these measurements show the signature of a glass Transition indicated by a change in the temperature dependence of the mean square displacement. For confined E7 the extracted glass transition temperature is shifted by more than 20 K to higher temperatures. Broadband inelastic neutron scattering was carried out by combining time-of-flight (IN6, ILL; TOFTOF, MLZ) and backscattering (IN10, ILL; SPHERES, MLZ) experiments in the time domain. The time dependence of the incoherent intermediate scattering function Sinc(q,t) shows two Relaxation processes which were quantitatively analyzed by fitting the KWW function to the data. The process at shorter times shows a close similarity the methyl group rotation found for polymeric systems. The process at longer times was assigned to glassy dynamics. The obtained data are compared in detail in their temperature dependence to the dielectric results. T2 - Deutsche Neutronenstreutagung 2016 CY - Kiel, Germany DA - 20.09.2016 KW - Neutron scattering KW - Broadband dielectric spectroscopy PY - 2016 AN - OPUS4-37516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konnertz, Nora A1 - Ding, Y. A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Enhanced gas separation performance of nanocomposites based on a polymer with intrinsic microporosity PIM-1 and phenethyl-POSS N2 - In times of the energy revolution, the need for energy efficient separation processes promotes the advancement of new high performance materials for use as highly selective separation membranes. Most promising materials in this field, especially for gas separation, are polymers with intrinsic microporosity (PIMs) which were firstly introduced by Budd and McKeown. In this study the permeability of PIM-1 was increased by 439 % by formation of nanocomposites with only 1 wt% of polyhedral oligomeric phenethyl-silsesquioxane (PhE-POSS) within the polymer matrix. As the CO2/CH4 selectivity is fully retained, this leads to a shift in the Robeson plot towards the upper bound. The Robeson plot describes the current state of the art trade-off relation between selectivity and permeability of all known membrane polymers. As molecular mobility is a key factor for gas transport as well as the often observed physical aging of such polymers, our study also includes for the first time, molecular dynamics and conductivity of pure PIM-1 and PIM-1 nanocomposites as investigated by broadband dielectric spectroscopy (BDS). T2 - Polydays 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - PIM-1 KW - POSS KW - Broadband dielectric spectroscopy KW - Permeation PY - 2016 AN - OPUS4-37701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konnertz, Nora A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Dielectric investigations of the high performance polymer PIM-1 and nanocomposites containing phenethylPOSS N2 - Especially now, in times of the energy revolution, the need for energy efficient separation processes promote the advancement of new high performance materials for use as highly selective separation membranes. Most promising materials in this field, especially for gas separation, are polymers with intrinsic microporosity (PIMs) which were firstly introduced by Budd and McKeown. Currently widespread application of PIMs for membrane technology is still restrained by their strong tendency to physical aging involving a significant loss of their good gas separation properties. This phenomenom is directly related to the molecular mobility. Here for the first time, molecular dynamics and conductivity in PIM-1, the first synthesized PIM, were investigated by broadband dielectric spectroscopy (BDS). Although an α-relaxation was not observed for PIM-1, as a thermal glass transition temperature has not yet previously been reported below its decomposition temperature at 370°C, surprisingly a conductivity contribution was found which is attributed to intermolecular agglomerates formed by π−π-stacking. Besides the studies on pure PIM-1 a polyhedral oligomeric phenethyl-silsesquioxanes (PhenethylPOSS) was used as nanofiller (0 – 40 wt%) in order to evaluate its ability to improve gas transport properties and probably control physical aging. The molecular mobility of all materials was analyzed by BDS of solution-cast films. T2 - 9th International Conference on Broadband Dielectric Spectroscopy and its Applications CY - Pisa, Italy DA - 11.09.2016 KW - Broadband dielectric spectroscopy KW - PIM-1 KW - POSS PY - 2016 AN - OPUS4-37705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas T1 - Broadband dielectric spectroscopy as an orthogonal tool to mechanical analysis – From theory to applications N2 - The basics of broadband dielectric spectroscopy were introduced in detail. The analysis of the data was discussed. As application of broadband dielectric spectroscopy the alpha-relaxation (dynamic glass transition), the chain dynamics of polymers, and the behavior of a high performance polymer were illustrated. T2 - Geesthachter Polymertage CY - Geesthcht, Germany DA - 08.11.2016 KW - Broadband dielectric spectroscopy PY - 2016 AN - OPUS4-38185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -