TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Correlation of process, design and welding residual stresses in WAAM of high-strength steel components N2 - High-strength fine-grained structural steels have great potential for modern weight optimized steel construc-tions. Efficient manufacturing and further weight savings are achievable due to Wire Arc Additive Manu-facturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, the application is still severely limited due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation. Residual stresses may be critical regarding the special microstructure of high-strength steels in context with the risk of cold cracking and component performance in service. Therefore, process- and material-related influences, as well as the design effects on residual stress formation and cold cracking, are being investi-gated in a research project (IGF 21162 BG) focusing a high-strength WAAM welding consumable with yield strength of over 800 MPa. Objectives are the establish-ment of special WAAM cold cracking tests and pro-cessing recommendations allowing economical, suita-ble, and crack-safe WAAM of high-strength steels. First studies on process-related influences showed transfor-mation residual stresses arising during cooling, which significantly influence stress evolution of the compo-nent during layer-wise build-up. This has not yet been investigated for WAAM of high-strength steels. Focus of this study is on the systematic investigation of interactions of the WAAM welding process and design with cooling time, hardness, and residual stresses. Defined open hollow cuboids were welded and investi-gated under systematic variation (design of experi-ments, DoE) of the scale/dimensions (cf. Fig. 1a) and heat control (interlayer temperature Ti: 100–300 °C), heat input E: 200–650 kJ/m. The welding parameters were kept constant as possible to avoid any influence by the arc and the material transfer mode. The heat input adjusted primarily via the welding speed. The resulting different weald bead widths were considered by different build-up strategies (weld beads per layer) to ensure defined wall thicknesses. The hardness was determined on cross-sections taken from the manufac-tured hollow cuboids (Fig. 1c) and the analysis of the residual stress state was carried out by means of X-ray diffraction (XRD) at defined positions on the lateral wall (Fig. 1b). The hardness is higher at the top compared to the lower weld beads, as shown in Fig. 1c exemplarily for central test parameters of the DoE = 425 kJ/mm, Ti = 200 °C). This may be attributed to the specific heat control of the top weld beads, i.e., quenching effects, which are not tempered by weld beads above as is the case for lower weld beads implying a higher hardness. It was observed that the hardness level decreases with increasing energy per unit length, while the in-terpass temperature has a rather low influence on the hardness Residual stress analysis was performed on the lat-eral wall in the welding direction, cf. Fig. 1b, to deter-mine the influence of heat control and design. In the top area of the wall, maximum longitudinal residual stress-es of up to over 500 MPa exhibit, which corresponds to approx. 65% of the nominal yield strength of the mate-rial. The statistic evaluation of stress levels in welding direction of all test specimens show that adaption of heat input may reduce welding stresses up to 50%. In-terpass temperature has less pronounced effect on cool-ing times, microstructure, and on the residual level within parameter matrix. Overall, the results show a significant influence of heat input and component di-mensions on the residual stresses and minor effect of the interpass temperature. Hence, the properties of the specimens may be effectively adjusted via heat input. The working temperatures should be considered for global shrinkage behavior or restraints. Such investiga-tions of residual stress are necessary to further deter-mine local and global welding stresses regarding the consequences on the component safety during manu-facturing and service. T2 - 6th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation CY - Osaka, Japan DA - 25.10.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -