TY - CONF A1 - Saadeh, Qais A1 - Pauw, Brian Richard A1 - Thünemann, Andreas A1 - Günster, Jens T1 - In-Situ SAXS Techniques N2 - Our project's aim is to enhance the capabilities of additive manufacturing techniques, where enabling a Two-Photon-Polymerization (TPP) 3D printer of producing arrays of precisely aligned nanoparticles is of an enormous value. As heterogeneous functional nanostructures with arrays of oriented nanoparticles are very promising in many fields; electrochemistry, energy storage, nanoelectronics among other vital fields. The feasibility and the convenience of orienting nanoparticles using magnetic, electric fields and ultrasonic vibrations will be systematically investigated, using Small Angle X-ray Scattering (SAXS), since SAXS can provide detailed information about the orientation characteristics of nano-Ensembles. Corresponding to our prerequisites, a set ad hoc functional sample holders, sample stages and other In-Situ SAXS solutions were developed, and incorporated to be compatible with a state-of-the-arts SAXS machine, called Multi-scale Analyzer for Ultrafine Structures (MAUS). The MAUS has been customized and engineered to serve as a miniaturized synchrotron, and that is exactly what we need. Experiments attempting to orient superparamagnetic nanoparticles will be discussed, where the outcomes will not only help in understanding the mechanics of field-particle interactions, it will also help in further developing the adequate needed set of corrections to the SAXS data, that is especially regards oriented samples. T2 - XVII International Small Angle Scattering Conference – SAS 2018 CY - Traverse City, Michigan, USA DA - 07.10.2018 KW - In-Situ Techniques KW - SAXS KW - Magnetic nano-particles PY - 2018 AN - OPUS4-46443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saadeh, Qais A1 - Pauw, Brian Richard A1 - Thünemann, Andreas A1 - Günster, Jens T1 - In-situ SAXS techniques N2 - This project studies the orientation of nanoparticles under the influence of external stimuli such as electric fields, magnetic fields and ultra-sonic vibrations. A set of functional sample holders that fit inside the sample chamber of a state-of-the-art Small Angle X-ray Scattering (SAXS) machine, called the “Multi-scale Analyzer for Ultrafine Structures” (MAUS). The MAUS has been custom engineered to serve as a miniaturized Synchrotron, thus enabling standard material to be characterized to a high standard. Our work is needed to detail the fine characterization of reference nano-particles, not only on the nano-scale, but also coupled with external agents. A second aim of this project is to verify a few proof-of-concept designs for the alignment of nano-particles. Where the alignment of nano-particles In-Situ is intended to further develop 3D printing technologies, and SAXS is an ideal choice to study the alignment of an oriented ensemble. For more information about the MAUS; https://www.bam.de/Content/DE/Pressemitteilungen/2018/AnalyticalSciences/2018-01-31-mit-maus-an-die-spitze-der-nano-forschung.html T2 - NanoWorkshop 2018 (Workshop on Reference Nanomaterials. Current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - SAXS KW - Nano-particles alignment KW - Magnetic nano-particles PY - 2018 AN - OPUS4-44912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -