TY - CHAP A1 - Szymoniak, Paulina A1 - Schönhals, Andreas ED - Schönhals, Andreas ED - Szymoniak, Paulina T1 - Epoxy-Based Nanocomposites—What Can Be Learned from Dielectric and Calorimetric Investigations? N2 - Epoxy-based nanocomposites are promisingmaterials for industrial applications (i.e., aerospace, marine, and automotive industries) due to their extraordinary mechanical and thermal properties. Regardless of the broad field of applications, there is still a considerable need to identify their structure–property relationships. Here, a detailed dielectric and calorimetric (DSC and fast scanning calorimetry) study on different epoxy-based nanocomposites was performed. Bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) was employed as the polymeric matrix, which was reinforced with three diverse nanofillers that exhibit different interaction strengths with the epoxy matrix (halloysite nanotubes, surface modified halloysite nanotubes, and taurine-modified layered double hydroxide). The structure, molecular mobility, and vitrification behavior are discussed in detail, focusing on the intrinsic structural and dynamic heterogeneity, as well as interfacial properties. KW - Nanocomposites KW - Epoxi nanocomposites KW - Dynamics KW - Interphase KW - Ridis amorphous fraction KW - Dielectric spectroscopy KW - Flash DSC KW - Temparatur modulated Flash DSC KW - Temperature modulated DSC PY - 2022 U6 - https://doi.org/10.1007/978-3-030-89723-9_11 SP - 335 EP - 367 PB - Springer CY - Cham, Switzerland AN - OPUS4-54566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed Aejaz A1 - Szymoniak, Paulina A1 - Zorn, R. A1 - Böhning, Martin A1 - Wolff, M. A1 - Zamponi, M. A1 - Schönhals, Andreas T1 - Molecular mobility in high-performance polynorbornenes:A combined broadband dielectric, advanced calorimetry,and neutron scattering investigation N2 - The molecular dynamics of two addition type polynorbornenes, exo-PNBSiand PTCNSi1, bearing microporosity has been investigated by broadbanddielectric spectroscopy, fast scanning calorimetry, and neutron scattering. Bothpolymers have the same side groups but different backbones. Due to theirfavorable transport properties, these polymers have potential applications inseparation membranes for gases. It is established in literature that molecularfluctuations are important for the diffusion of small molecules through poly-mers. For exo-PNBSi, two dielectric processes are observed, which are assignedto Maxwell/Wagner/Sillars (MWS) process due to blocking of charge carriersat internal voids or pore walls. For PTCNSi1, one MWS-polarization process isfound. This points to a bimodal pore-size distribution for exo-PNBSi. A glasstransition for exo-PNBSi and for PTCNSi1 could be evidenced for the first timeusing fast scanning calorimetry. For Tgand the corresponding apparent activa-tion energy, higher values were found for PTCNSi1 compared to exo-PNBSi.For both polymers, the neutron scattering data reveal one relaxation process.This process is mainly assigned to methyl group rotation probably overlayedby carbon–carbon torsional fluctuations. KW - Advanced calorimetry KW - Dielectric spectroscopy KW - Neutron scattering KW - Polynorbornenes PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547086 SN - 0032-3888 VL - 62 IS - 7 SP - 2143 EP - 2155 PB - Wiley AN - OPUS4-54708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawek, Marcel A1 - Madkour, Sherif A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of Irreversibly Adsorbed Layers in Thin Polymer Films N2 - In well-annealed thin polymer films, with non-repulsive polymer/substrate interactions, an irreversibly adsorbed layer is expected to form. These adsorbed layers have shown great potential for technological applications. However, their growth kinetics and molecular dynamics are still not fully understood. This is partially due to the hard accessibility of these layers in thin films. Here, the irreversibly adsorbed layers of homopolymer thin films are revealed by solvent-leaching experiments. First, the growth kinetics of these layers is investigated as a function of annealing times and original film thickness. The thickness, topography and quality of the adsorbed layer is controlled with Atomic Force Microscopy (AFM). Secondly, the molecular mobility of the adsorbed layer is investigated with Broadband Dielectric Spectroscopy (BDS). A recently developed nanostructured capacitor is employed to measure the adsorbed layers with a free surface layer. The results are quantitatively compared and discussed with respect to recently published work. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films KW - Dielectric spectroscopy PY - 2018 AN - OPUS4-44489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Yin, Huajie A1 - Konnerts, Nora A1 - Böhning, Martin T1 - Molecular mobility and physical aging of polymers with intrinsic microporosity as revealed by dielectric spectroscopy N2 - The dielectric properties of different polymers with intrinsic microporosity are investigated by braodband dielectric spectroscopy. The results are discussed with regard to the structure T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Polymers with intrinsic microporosity KW - Gas separation membranes KW - Dielectric spectroscopy PY - 2018 AN - OPUS4-44490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Szymoniak, Paulina A1 - Madkour, Sherif T1 - Nano-sized Relaxation Spectroscopy of Miscible PVME/PS Blend Thin Films N2 - The moleculat dynamics of ultra thin films of polystyrene/poly(vinyl methyl ether) blends as revealed by nanosized specific heat and dielectric spectroscopy is discussed. T2 - Viscous liquids and the glass transition XV CY - Søminestationen, Holbæk, Denmark DA - 21.06.2018 KW - Thin polymeric films KW - Dielectric spectroscopy KW - Specific heat spectroscopx PY - 2018 AN - OPUS4-45280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas T1 - Glass transition of thin polymeric films as revealed by calorimetric and dielectric techniques N2 - The structure and dynamics of thin polymeric films is reviewed and discussed in the frame work of novel theoretical approaches T2 - Lähnwitzseminar on Calorimetry CY - Rostock-Warnemünde, Germany DA - 03.06.2018 KW - Thin polymeric films KW - Dielectric spectroscopy KW - Thermal süectroscopy PY - 2018 AN - OPUS4-45164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Molecular dynamics of an asymmetric PVME/PS Blend investigated by broadband dielectric and specific heat spectroscopy N2 - Over the past decades research on the molecular dynamics of miscible polymer blends are of topical interest in the literature, in an attempt to understand the segmental mobilty of individual components, as it is affected by blending. In general, miscible polymer blends exhibit a complex behavior of the molecular mobility. For an A/B blend the relaxation times of component A and component B are affected by the spatial local compositional heterogeneity, present in binary systems on a microscopic level, regardless of the macroscopic homogeneity. Here, a combination of broadband dielectric and specific heat spectroscopy was employed to study the dynamically asymmetric PVME/PS blend with seven different compositions, focusing on samples with high PS contents. Considering that PS is dielectrically invisible, BDS is a powerful technique to study the response of PVME, as it is affected by PS segments. In this work the well-known binary relaxation times distribution of PVME in a blend, originating from the spatial local heterogeneity, was studied over ten decades in frequency, for the first time in literature. Secondly, one of the detected processes, α’-relaxation, shows a crossover from high-temperature behavior (system in equilibrium) towards a low temperature regime, where PS undergoes the thermal glass transition, resulting in confined segmental dynamics of PVME within a frozen network of PS. Here, we introduce a precise mathematical tool to distinguish between the temperature dependency regimes of the process, and examine the composition dependence of the crossover temperature, detected by dielectric spectroscopy. Moreover, the dielectric data was compared in detail with results obtained by specific heat spectroscopy. This comparison provides new insights in the dynamics and dynamic heterogeneity of the PVME/PS blend system. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Polymer blends KW - Dielectric spectroscopy KW - Specific heat spectroscopy PY - 2018 AN - OPUS4-45917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Dynamics of nanoscopically confined PVME in thin films of an asymmetric miscible PVME/PS blend N2 - In recent years, substantial efforts have been devoted to investigating nanoscopic confinement of polymers, and its effect on glassy dynamics. Broadband Dielectric Spectroscopy (BDS) was used to study the dynamics of ultra-thin films of PVME/PS 50/50 wt% blend, employing a novel nano-structured capacitor sample arrangement. The investigated system shows a complex dynamic behavior. First, an α-relaxation, related to a bulk-like layer was found. Second, an α’-relaxation was observed, characteristic for dynamically asymmetric blends, where the out of equilibrium dynamics is attributed to weakly-cooperative PVME segments relaxing within a frozen environment of PS segments. Third, for thinnest films, an Arrhenius-like process was dominant in the dielectric spectra, indicating localized fluctuations of the segments. Relaxation rates of this process resembled that of the degenerated α-relaxation of the adsorbed layer, found for pure PVME [1], thus it was assigned accordingly. For thinnest films, this process undergoes a further confinement, due to the topological constraints, introduced by PS. Such multiple confinement effect has not been reported for ultra-thin films of polymer blends, before this study [2]. [1] Madkour, S. et al. ACS Appl. Mater. Interfaces 2017, 9, 7535. [2] Madkour, S. et al. ACS Appl. Mater. Interfaces 2017, 9, 37289. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Polymer blends KW - Thin polymer films KW - Dielectric spectroscopy KW - Specific heat spectroscopy PY - 2018 AN - OPUS4-45919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Madkour, Sherif T1 - Multiple Glassy Dynamics of an Asymmetric PVME/PS Blend Investigated by Broadband Dielectric and Specific Heat Spectroscopy N2 - Over the past decades research on the molecular dynamics of miscible polymer blends is of topical interest in the literature, to understand the segmental mobility of individual components, as it is affected by blending. In general, miscible polymer blends exhibit a complex dynamic behavior. For an A/B blend the relaxation times of component A and component B are affected by the spatial local compositional heterogeneity, present in binary systems on a microscopic level, regardless of the macroscopic homogeneity. Here, a combination of broadband dielectric and specific heat spectroscopy was employed to study the dynamically asymmetric PVME/PS blend with seven different compositions, focusing on samples with high PS contents. Considering that PS is dielectrically invisible, BDS is a powerful technique to study the response of PVME, as it is affected by PS segments. Here, three separate relaxation processes were found by dielectric investigations, related to confined or constrained PVME segments due to the spatial local compositional heterogeneities, which is in contrary to the previous literature findings [1]. Moreover, the dielectric data was compared with results obtained by specific heat spectroscopy, where a fourth relaxation process was found, due to the cooperative fluctuations of PVME and PS. [1] Colmenero, J., Arbe, A. Soft Matter, 2007, 3, 1474. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 01.04.2019 KW - Specific heat spectroscopy KW - Polymer blends KW - Dielectric spectroscopy PY - 2019 AN - OPUS4-47764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular Mobility and Charge Transport in Polymers of Intrinsic Microporosity (PIMs) as Revealed by Dielectric Spectroscopy N2 - Polymeric membranes represent a low-cost, energy efficient solution for gas separation. Recently polymers of intrinsic microporosity (PIMs) have emerged as prestigious membrane materials featuring a large concentration of pores smaller than 1 nm, a BET surface area larger than 700 m2/g and high gas permeability and selectivity. Unusual chain structure combining rigid segments with sites of contortion gives rise to the intrinsic microporosity. However, this novel class of glassy polymers are prone to pronounced physical aging. The initial microporous structures approach a denser state via local small scale fluctuataions, leading to a dramatic reduction in the gas permeabilities. For the first time, dielectric relaxation spectroscopy with state-of-the-art high-resolution analyzers was employed to investigate three representative PIMs with a systematic change in chain rigidity: PIM-EA-TB 〉 PIM-1 〉 PIM-MDPH-TB. The molecular mobility, the charge transport and their response upon heating (aging) in the polymers were measured in a broad temperature range through isothermal frequency scans during different heating / cooling cycles. Multiple dielectric processes following Arrhenius behavior were observed for the investigated polymers. Local fluctuations, Maxwell-Wagner-Sillars (MWS) polarization and structural relaxation phenomena were discussed and attempted to be correlated with the structural features of PIMs. Moreover, all PIMs showed conductivity in the glassy state. The significant increase in the conductivity with increasing temperature far below the glass transition temperature of PIMs is explained in terms of the loosely packed microporous structure and the formation of local intermolecular agglomerates due to interaction of π-electrons in aromatic moieties of the polymer backbone. T2 - American Chemical Society (ACS) National Meeting & Expo 2019 CY - Orlando, FL, USA DA - 31.03.2019 KW - Dielectric spectroscopy KW - Polymeric membrane KW - Polymers of intrinsic microporosity PY - 2019 AN - OPUS4-47805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -