TY - CONF A1 - Klingelhöffer, Hellmuth T1 - Temperaturschwankungen an Extensometern - ein vielfach vernachlässigtes Thema N2 - Extensometer sind seit Jahrzehnten im Einsatz und bilden die Basis für eine präzise Dehnungsmessung in werkstoffmechanischen Versuchen. Jedoch ist die Temperaturstabilität von Extensometern häufig noch nicht ausreichend beachtet worden, um Fehler verursacht durch Temperaturschwankungen zu minimieren. Dieses wird derzeit nicht nur in Deutschland, sondern auch international zunehmend diskutiert. Datenblätter von Extensometern sind teils unvollständig besonders hinsichtlich von Temperatureinflüssen. Extensometer für den Einsatz bei höheren Temperaturen sollen z.B. laut Normen für dehnungsgeregelte Ermüdungsversuche mit Luft oder Wasser aktiv gekühlt werden. Jedoch schreiben die Normen keine Temperatur-Toleranzen für Extensometer vor. Dehnungsfehler verursacht durch Temperaturschwankungen am Extensometer bleiben meist verborgen, da die Temperatur des Extensometers standardmäßig gar nicht gemessen wird. Die Ursache von Einflüssen zur Temperaturstabilität von Extensometern wird erläutert. Ein einfaches Rechenbeispiel zeigt die Empfindlichkeit von Extensometern gegenüber Temperaturschwankungen und die Auswirkungen auf den Dehnungsfehler. Lösungsmöglichkeiten zur Optimierung werden aufgezeigt. Der Anwender von Extensometern soll sensibilisiert werden, um der Temperaturstabilität von Extensometern sowohl hinsichtlich Herstellerspezifikationen als auch bei der Anwendung von Extensometern im Prüflabor mehr Aufmerksamkeit zu schenken, um letztlich die Qualität von Versuchsergebnissen zu verbessern. Empfehlungen an Extensometerhersteller werden formuliert. Dieses Thema wird zukünftig auch in Prüfnormen mehr Aufmerksamkeit geschenkt werden. Es werden Maßnahmen zur Verbesserung der Temperaturstabilität von Extensometern Einzug in Prüfnomen finden, um letztlich verlässlichere Versuchsergebnisse zu erhalten. Es ist beabsichtigt, eine Verbesserung der Temperaturstabilität von Extensometern z.B. bei der nächsten Revision der Prüfnormen ISO 12106 und ISO 12111 für dehnungsgeregelte LCF- und TMF-Versuche zu berücksichtigen. T2 - Werkstoffprüfung 2019 CY - Neu-Ulm, Germany DA - 03.12.2019 KW - Extensometer KW - Temperaturschwankungen KW - Dehnungsfehler PY - 2019 AN - OPUS4-49961 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klingelhöffer, Hellmuth T1 - Temperaturschwankungen an Extensometern - ein vielfach vernachlässigtes Thema T2 - Werkstoffe und Bauteile auf dem Prüfstand, Tagungsband Werkstoffprüfung 2019 N2 - Extensometer werden seit langer Zeit erfolgreich für die Ermittlung von werkstoffmecha-nischen Kennwerten eingesetzt. Allerdings wurden in den letzten Jahren immer wieder durch Temperaturschwankungen bedingte Drift an Extensometern festgestellt, die be-sonders in Langzeitversuchen zu Problemen führen können. Es wurden Ursachen für die thermische Drift von Extensometern aufgezeigt. Anhand von einem Beispiel wurde gezeigt, wie sich Temperaturschwankungen an einem Extensometer auf die Ergebnisse von werkstoffmechanischen Ermüdungsversuchen auswirken können. An einem weiteren Beispiel wurde beschrieben, dass der durch Temperaturschwankungen verursachte Dehnungsfehler eines Extensometers stark von der Höhe der Temperaturschwankung und von der Dehnungsschwingbreite abhängt und, je nach Anwendungsfall größer als 1% werden kann. Es wurde verdeutlicht, dass bisherige nach Norm vorgeschriebene Maß-nahmen oft nicht ausreichen, um Einflüsse von Temperaturschwankungen am Extenso-meter zuverlässig zu unterbinden. Vorschläge wurden aufgezeigt, um die Temperatursta-bilität von Extensometern zu verbessern. Das gesamte Temperaturmanagement von Raumtemperatur, Kühlwassertemperatur, Temperaturmessung am Extensometer etc. sollte von Grund auf neu betrachtet werden, um Verbesserungen bei der Temperatur-konstanz von Extensometern zu erlangen. Ferner wurde vorgeschlagen, Extensometer in temperaturkompensierter Ausführung zu entwickeln und zu verkaufen. Dieses sollte Ret-rofits für existierende Extensometer miteinschließen. Konkrete Maßnahmen zur Imple-mentierung in Materialprüfungsnormen müssen weiter diskutiert werden. T2 - Tagung Werkstoffprüfung 2019 CY - Neu-Ulm, Germany DA - 03.12.2019 KW - Extensometer KW - Temperaturschwankungen KW - Dehnungsfehler PY - 2019 SN - 978-3-88355-418-1 SP - 361 EP - 366 PB - Inventum GmbH CY - Sankt Augustin AN - OPUS4-49965 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klingelhöffer, Hellmuth T1 - Demands for improvement of temperature stability of extensometers T2 - Proc. Eighth Int. Conf. on Low Cycle Fatigue (LCF8) N2 - Thermal fluctuations do exist at extensometers but they remain quite often unknown because the temperature of the extensometer is not measured, recorded and assessed in strain controlled tests. The temperature fluctuation leads to thermal expansion of the gauge length of the extensometer resulting in force fluctuations as a materials response of the material tested in a strain controlled test. The thermal expansion leads to an error of the strain range applied. A case study was conducted to calculate the strain range error when the strain range was varied as well as the thermal fluctuation of the extensometer. The most important outcome of the study is that the strain range error can exceed the allowed limits if the thermal fluctuation of the extensometer is too high. Sources of thermal fluctuation of the extensometer were analyzed and identified. Suggestions are given to reduce the thermal fluctuation of the extensometer. T2 - LCF8 CY - Dresden, Germany DA - 27.06.2017 KW - Accuracy KW - Strain error KW - Temperature fluctuation KW - Extensometer PY - 2017 SN - 978-3-9814516-5-8 SP - 227 EP - 232 PB - DVM CY - Berlin AN - OPUS4-40888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klingelhöffer, Hellmuth T1 - Aktueller Stand und Perspektiven der Standardisierung von TMF-Versuchen N2 - Der Vortrag gibt einen Überblick über die wichtigsten Aspekte der anstehenden Revision der Norm ISO 12111 aus deutscher Sicht. Ferner wird ein neues Normungsprojekt für eine ISO-Norm für den kraft-geregelten TMF-Versuch unter deutscher Leitung vorgestellt. Es wird ein Ausblick über Rissfortschrittsmessungen bei TMF-Beanspruchung gegeben. Ferner wird über die Problematik der thermisch bedingten Drift von Extensometern gesprochen. Der Vortrag schließt mit Betrachtungen zur Messunsicherheit ab, die in Normen einfließen. T2 - DVM-Workshop Bauteilverhalten bei thermo-mechanischer Ermüdung CY - Berlin, Germany DA - 06.04.2017 KW - Thermo-mechanische Ermüdung KW - Normung PY - 2017 AN - OPUS4-46689 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klingelhöffer, Hellmuth A1 - Aegerter, J. A1 - Scherm, T. A1 - Schenuit, E. A1 - Sotheran, S. A1 - Loveday, M. A1 - Bosch, P. A1 - Bloching, H. A1 - Olbricht, Jürgen A1 - McEnteggart, I. T1 - Discussion on “Analysis on the issues in ISO 6892-1 and TENSTAND WP4 report based on the data of confirm tests by 21 laboratories” by H. Li, X. Zhou, J. Shen, and D. Luo. The regular article was published in journal of Testing and Evaluation, Vol. 45, No. 3, 2017, pp. 723–731, doi:10.1520/ JTE20150479. ISSN 0090-3973 JF - Journal of Testing and Evaluation N2 - The authors, Li et al., of the paper entitled “Analysis on the Issues in ISO 6892-1 and TENSTAND WP4 Report Based on Data to Confirm Tests by 21 Laboratories” (J. Test. Eval. DOI: 10.1520/JTE20150479 (online only)) have expressed views that the authors of this rebuttal believe to be based on fundamental misunderstandings and misinterpretations of the tensile testing standard ISO 6892-1:2009, ISO 6892-1:2016, and its former versions, thus leading to erroneous conclusions. This refutation is intended to clarify the understanding of ISO 6892-1 and to address the misunderstandings and the misinterpretations of the authors of the paper. The present standard ISO 6892-1:2016 has a long history dating back to the 1970s. At that time, the tensile testing procedure was standardized on the National and International scale in parallel. To understand the present standard, the knowledge of the history helps to understand the background of details of the testing procedure implemented today. The history of the tensile testing standard has been discussed extensively during the annual international standardization meeting of ISO committee TC 164 SC1 for the last few years, at which some of the authors of the Li et al. paper attended. The authors continue to disagree with facts that were agreed by the consortium of the European research project TENSTAND and by the present international experts involved in ISO TC 164 SC1. It appears that the principal objective of the authors regarding their present publication was to increase the testing speed during tensile testing. However, the international standardization community has previously declined similar proposals by some of the authors. Many Arguments presented by Li et al. were thus refuted. The conclusions of their paper are misleading and the international standardization community for tensile testing refused to revise the present standard, ISO 6892-1 (2016), according the authors’ proposals. KW - Tnsile testing KW - ISO 6892-1 KW - TENSTAND WP4 Report PY - 2017 UR - www.astm.org DO - https://doi.org/10.1520/JTE20160526 SN - 0090-3973 VL - 45 IS - 3 SP - 1105 EP - 1114 PB - ASTM CY - West Conshohocken, PA, USA AN - OPUS4-46690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klingelhöffer, Hellmuth T1 - Actual developments in fatigue standardization N2 - The presentation deals with actual developments in fatigue standardization, shows news standards under development and ongoing revisions of standards. Additionally, current activities are shown regarding measurement uncertainty annexes in ISO mechanical testing standards of metals. T2 - 8th Int Conf on LCF (LCF8) CY - Dresden, Germany DA - 27.06.2018 KW - Fatigue testing standards KW - Measurement uncertainty PY - 2017 AN - OPUS4-46700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klingelhöffer, Hellmuth T1 - Strategic aspects for the development of measurement uncertainty annexes for ISO testing standards N2 - The presentation shows an overview over the current situation of the development of measurement uncertainty annexes for ISO mechanical testing standards. The comparability of measurement uncertainty statements is not ensured. The utilization of ready calculated measurement uncertainty values remains unclear. Partly the measurement uncertainty values clash with existing product standards where minimum values e.g. for the materials strength are determined. A route forward is shown to solve the current problems. T2 - ISO TC 164 Konferenz CY - Mokpo, South Korea DA - 17.09.2017 KW - Measurement uncertainty KW - Product standard KW - ISO mechanical testing standard PY - 2017 AN - OPUS4-46704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klingelhöffer, Hellmuth T1 - German proposal for harmonisation of ISO 15363 and EN 10275 under lead of ISO N2 - Bei den Normen ISO 15363 und EN 10275 handelt es sich um den hydraulischen Ringaufweitungsversuch, der in der Rohrprüfung in der Industrie genutzt wird. Auf Vorschlag von Salzgitter Mannesmann Forschung wurde im Arbeitsausschuss NA 062-01-53AA – Rohrprüfung - der Vorschlag eingebracht, beide Normen zu harmonisieren. Beide Normen sind fast identisch. Lediglich die verwendeten Symbole sind unterschiedlich. Daher soll in der ISO 15363 ein weiterer Anhang eingeführt werden, der eine Tabelle enthält, in der die Symbole der ISO 15363 und der EN 10275 gegenübergestellt werden. Die in der EN 10275 verwendeten Symbole entsprechen denen, die in Produktnormen für Stahlrohre verwendet werden. Der Normenharmonisierungsvorschlag, der unter dem Wiener Abkommen umgesetzt werden soll, wurde 2016 auf die Sitzung ISO TC 164 SC2 erfolgreich von deutscher Seite eingebracht. T2 - ISO TC 164 SC2 CY - Tokyo, Japan DA - 24.10.2016 KW - ISO 15363 KW - EN 10275 KW - Harmonisation KW - Tube ring hydraulic pressure test KW - Vienna agreement PY - 2016 AN - OPUS4-38252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klingelhöffer, Hellmuth T1 - Influence of thermal drift of extensometers on fatigue testing N2 - Extensometer für Hochtemperatur-Ermüdungsversuche sind vielfach aus Aluminium gebaut, an dem Glas- oder Keramikstangen befestigt sind, die in den heißen Bereich des Versuches hineinragen. In einer physikalischen Betrachtung wird die Wärmeausdehnung von Aluminium berechnet und der relative Fehler aus der thermischen Drift ermittelt. Der Fehler ist stark von der thermischen Fluktuation abhängig. Ferner steigt der Fehler besonders bei kleinen Dehnungen stark an. Es wird deutlich, dass bei kleinen Dehnungen die erlaubte Temperaturschwankung im Bereich von 0,5 – 1K betragen darf, um den nach Norm (z.B. ISO 12106) erlaubten Fehler von maximal 1 % nicht zu überschreiten. In dehnungsgeregelten Ermüdungsversuchen äußert sich die Temperaturschwankung am Extensometer in Kraftschwankungen an der geprüften Probe. Daher bewirkt eine Konstanthaltung der Temperatur eine Verbesserung der Versuchsergebnisse. In der Praxis sind jedoch Temperaturmessungen am Extensometer nicht üblich. Von daher kann der thermisch bedingte Fehler aufgrund von Temperaturschwankungen am Extensometer gar nicht ausgewertet werden. Für eine Verbesserung der Qualität von Versuchsergebnissen wird generell eine Messung der Temperatur am Extensometer vorgeschlagen. T2 - ISO TC 164 SC5 CY - Tokyo, Japan DA - 25.10.2016 KW - Thermal drift KW - Extensometer KW - Thermal expansion KW - Relative error PY - 2016 AN - OPUS4-38253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klingelhöffer, Hellmuth T1 - Demands to uncertainty annexes of ISO testing standards N2 - Es ist eine seit ca. 10 Jahren bestehende Politik des ISO Gremiums TC 164, für Normen von mechanischen Prüfverfahren einen Anhang zu entwickeln, der Angaben zur Berechnung der Messunsicherheit enthält. Bis auf wenige Ausnahmen enthalten heute ISO-Normen überwiegend informative Anhänge, die nur allgemeine Informationen zur Berechnung der Messunsicherheit enthalten. In dem Vortrag sollen die Nachteile einer solchen Vorgehensweise dargestellt werden. Es wird ein Vorschlag zur Verbesserung unterbreitet. Anhand von zwei einfachen Beispielen wird veranschaulicht, dass solche informativen Anhänge Messunsicherheiten erzeugen, die bei Erstellung durch unterschiedliche Prüflaboratorien nicht miteinander vergleichbar sind. Das ist nicht befriedigend. Von daher wird vorgeschlagen, einen normativen Anhang zu erstellen, der die Auftraggeber und Antragnehmer verpflichtet, eine Methode zur Berechnung der Messunsicherheit vertraglich auszuhandeln. Ferner wird in dem normativen Anhang darauf hingewiesen, dass beim Vergleich von Messunsicherheiten die Berechnungsgrundlage identisch sein muss. Ferner wird vorgeschlagen, einen informativen Anhang mit einem Beispiel zur Berechnung der Messunsicherheit einzuführen, um Auftraggebern und Auftragnehmern eine entsprechende Möglichkeit zur Berechnung an die Hand zu geben. Diese Methode ist ein pragmatischer Einstieg in die Entwicklung von Anhängen für ISO Normen, in denen die Messunsicherheit berechnet wird. Der Vorschlag enthält Mindestanforderungen. Eine Weiterentwicklung wird in der Zukunft angestrebt. T2 - ISO TC164 AHG1 CY - Tokyo, Japan DA - 28.10.2016 KW - Uncertainty annex KW - ISO materials testing standards KW - Normative annex KW - Uncertainty calculation PY - 2016 AN - OPUS4-38241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -