TY - CONF A1 - Yildirim, Arda A1 - Sentker, K. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Structure, Dynamics and Phase Behavior of a Discotic Liquid Crystal Confined in Nanoporous Anodic Aluminum Oxide Membranes N2 - The interest in porous anodic aluminum oxide (AAO) has been rapidly growing due to its numerous applications in separation, catalysis, energy generation and storage, electronics, and sensors. From the scientific point of view, AAO is a topical interest in soft matter fields. Spatial confinement of soft matter in nanoporous media influences its structure, thermodynamics, and mobility. Embedding polymers and liquid crystals into nanopores of AAO results in a 2D nanoconfinement of these materials. This confinement affects their properties, compared to the bulk, such as phase transition temperatures and enthalpies, molecular mobility, and architecture of the crystallization. On the other hand, discotic liquid crystals (DLCs) are a promising class of soft matter for electronic applications. This is due to their ability to organize and stack themselves into columns in a hexagonal columnar mesophase, a mesophase in between the plastic crystalline and isotropic phase, driven by the overlap of the π orbitals of their aromatic core. This leads to a high charge-carrier mobility along the column axis. Further, these columns could then be considered as “molecular nanowires”. In this study, 2,3,6,7,10,11 hexakis[hexyloxy] triphenylene (HAT6), a triphenylene based DLC, was confined into nanoporous AAO membranes. The structure, dynamics and the phase behavior of the confined HAT6 were investigated by broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC). HAT6 was embedded into nanoporous AAO membranes by melt infiltration in the isotropic phase under argon atmosphere. The membranes have parallel aligned cylindrical nanopores, with pore diameter of 10, 20, 25, 40, 80, 120 and 180 nm. The filling degree for each sample was checked by thermogravimetric analysis (TGA) in order to ensure complete filling. Bulk HAT6 forms a hexagonal columnar phase; in between the isotropic phase above 371 K and the plastic crystalline phase below 340 K. Unlike the bulk, the confined HAT6 split the plastic crystalline-to-hexagonal columnar phase transition in two, which might be interpret as two different phase structures; close to the wall and at the pore center. Moreover, the isotropic-to-columnar transition of the confined HAT6 shifted, with decreasing pore diameter, to lower temperatures. Furthermore, pore surfaces of a series of membranes were chemically modified, resulting in a more hydrophobic pore surface than the unmodified ones. HAT6 was embedded into the modified membranes by the same aforementioned preparation. The influence of the changed host-guest-interaction, on the structure, dynamics, and the phase behavior of HAT6 confined in the modified membranes, was also investigated by BDS and DSC. T2 - 9th International Conference on Porous Media & Annual Meeting CY - Rotterdam, The Netherlands DA - 08.05.2017 KW - Nanoporous media KW - Anodic Aluminum Oxide KW - Discotic Liquid Crystal PY - 2017 AN - OPUS4-40089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sentker, Kathirn A1 - Yildirim, Arda A1 - Lippmann, M. A1 - Hoffmann, T. A1 - Seeck, O. A1 - Kityk, A. A1 - Schönhals, Andreas A1 - Huber, Patrick T1 - Fabrication of organic nanowires by melt infiltration of a discotic liquid crystal: A combined X-ray diffraction and optical birefringence study N2 - Optical polarimetry and angle dependent X-ray scattering in employed to study the structure of a discotic liquid crystal confined into nanochannels. The pore size dependence of the obtauned data are discussed in detail. T2 - DPG Spring Meeting 2017 CY - Dresden, Germany DA - 20.03.2017 KW - Discotic Liquid Crystals KW - Nanoconfinement PY - 2017 AN - OPUS4-39591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sentker, K. A1 - Yildirim, Arda A1 - Zantop, A. A1 - Lippmann, M. A1 - Hofmann, T. A1 - Seeck, O. A1 - Kityck, A. A1 - Mazza, M. A1 - Schönhals, Andreas A1 - Huber, P. T1 - Characterization of the thermotropic phase behavior and microscopic structure of a confined discotic liquid crystal N2 - Discotic liquid crystals (DLC) filled into cylindrical nanopores exhibit a liquid crystalline phase with their molecules arranged in hexagonal columns. The columns orient perpendicular (radially) or parallel (axially) with respect to the pore axis depending on surface anchoring conditions and pore size. Axially oriented columns enable the fabrication of organic nanowires utilizing the high conductivity in the stacking direction due to overlapping π-electrons. This leads to interesting applications in e.g. organic semiconductorbased devices. The molecular ordering of the liquid crystalline columns can be probed by temperature dependent optical retardation measurements supplemented by X-ray diffraction sensitive to the translational order. We investigated the DLC 2, 3, 6, 7, 10, 11 - hexakis [hexyloxy] triphenylene (HAT6) embedded in nanoporous alumina and silica membranes as function of the pore diameter (12 nm - 180 nm). Due to their hydrophilic nature porous membranes enforce face-on anchoring leading to a radial orientation. To obtain edge-on anchoring conditions, and thus favoring axial orientation, the silica membrane surface is chemically modified. The optical retardation measurements show that the columns orient radially in these membranes independent of the anchoring conditions. Interestingly, a quantized phase transition of each molecular layer is found indicated by a distinct increase of the optical orientation. Additionally, an axial orientation of HAT6 filled into alumina membranes with a pore diameter of 25 nm is achieved. A Landau-de Gennes ansatz semi-quantitatively describes the phase transition behavior observed. X-ray diffraction experiments performed at the 3rd generation synchrotron radiation source PETRA III at DESY giving detailed information about the translational order support these findings. Summarizing, this study shows the existence of a phase transition in the molecular range as well as the suitability of the membrane with 25 nm pores as a template for preparing organic nanowires. T2 - Liquids 2017 – 10th Liquid Matter Conference CY - Ljubljana, Slovenia DA - 17.07.2017 KW - Discotic Liquid Crystals PY - 2017 AN - OPUS4-41180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -