TY - JOUR A1 - Frunza, S. A1 - Frunza, L. A1 - Ganea, C. P. A1 - Zgura, I. A1 - Bras, A. R. A1 - Schönhals, Andreas T1 - Rod-like cyanophenyl probe molecules nanoconfined to oxide particles: Density of adsorbed surface species JF - The European Physical Journal Plus N2 - Surface layers have already been observed by broadband dielectric spectroscopy for Composite systems formed by adsorption of rod-like cyanophenyl derivates as probe molecules on the surface of oxide particles. In this work, features of the surface layer are reported; samples with different amounts of the probe molecules adsorbed onto oxide (nano) particles were prepared in order to study their interactions with the surface. Thermogravimetric analysis (TGA) was applied to analyze the amount of loaded probe molecules. The density of the surface species ns was introduced and its values were estimated from quantitative Fourier transform infrared spectroscopy (FTIR) coupled with TGA. This parameter allows discriminating the composites into several groups assuming a similar interaction of the probe molecules with the hosts of a given group. An influence factor H is further proposed as the ratio of the number of molecules in the surface layer showing a glassy dynamics and the number of molecules adsorbed tightly on the surface of the support: It was found for aerosil composites and used for calculating the maximum filling degree of partially filled silica MCM-41 composites showing only one dielectric process characteristic for glass-forming liquids and a bulk behavior for higher filling degrees. KW - Cyanophenyl molecules KW - Nanoconfinement KW - Surface Species PY - 2016 DO - https://doi.org/10.1140/epjp/i2016-16027-5 SN - 2190-5444 VL - 131:27 IS - 2 SP - 1 EP - 9 PB - Springer AN - OPUS4-35364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -