TY - JOUR A1 - Waikom Singh, S. A1 - Stegemann, Robert A1 - Kreutzbruck, Marc T1 - Three-dimensional finite element analysis of the stress-induced geometry effect on self-magnetic leakage fields during tensile deformation JF - Insight - Non-Destructive Testing and Condition Monitoring N2 - The metal magnetic memory (MMM) technique relies on the measurement of stress-induced self-magnetic leakage fields (SMLFs) at the stress concentration zones (SCZs) of ferromagnetic materials during mechanical loading. However, there is an associated change in geometry of the specimen along with the stress due to plastic deformation. This paper presents a three-dimensional finite element (3D-FE) analysis of the stress-induced geometry effect on SMLFs in notched specimens during tensile deformation. The tangential (Hx) and normal (Hy) components of the SMLF signals have been predicted from the deformed specimens caused by different levels of tensile stress. Key parameters from the SMLF signals are determined for the possible estimation of damage in the specimen under tension. Studies reveal that the stress-induced geometry effect has a great influence (about 20%) on the SMLF signals, especially in the plastic deformation stage. The results show that the peak amplitude could be used for the estimation of different deformation stages under tension. The study also reveals that the SMLF signal is influenced by the thickness of the tensile specimen. The model-predicted thickness profile has also been experimentally validated. KW - Metal magnetic memory KW - Finite element modelling KW - Steel KW - Tensile deformation PY - 2016 DO - https://doi.org/10.1784/insi.2016.58.10.544 SN - 1354-2575 SN - 0007-1137 VL - 58 IS - 10 SP - 544 EP - 550 AN - OPUS4-38134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -