TY - CHAP A1 - Orts-Gil, G. A1 - Österle, Werner ED - Tantra, R. T1 - Reference nanomaterials T2 - Nanomaterial Characterization N2 - This chapter reviews relevant aspects of the still less explored field of RNMs. In the first part, definition of RMs according to different metrological levels was presented as well as the general strategy on their development. In the second part, the importance of RNMs in material science and nanotoxicology is explained and considerations on the use of silica nano-objects as potential future reference material was discussed. Overall, several points should be highlighted from this chapter: Definition of a reference material depends on the level of standardization. Certified reference material represents the highest level of traceability. Different types of reference materials, standard materials and certified reference materials are available, as shown in Table 3.1. The preparation of nano-objects with well-defined mechanical properties is still an unsolved issue and thus needs further R&D activities. Nevertheless, amorphous silica seems to be a promising candidate for reaching this objective. Traceable properties of nanomaterials are still limited to few cases such as primary particle size and thickness measurements of very thin films. In general, developed RMs are monoparametric thus, only one characteristic of the nano-objects is reported. In nanotoxicology, the challenge is in the development of suitable RNM that bears similarities to the measurements made on the sample analysed. KW - Reference material KW - Certified reference material KW - Nanostructure PY - 2016 SN - 9781118753590 SP - 49 EP - 61 PB - Wiley & Sons, Ltd. ET - 1 AN - OPUS4-37943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Güttler, Arne A1 - Richter, Maria A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - New Reference Materials for the Quantification and Standardization of Fluorescence-based Measurements N2 - Luminescence techniques are amongst the most commonly used analytical methods in the life and material sciences due to their high sensitivity and non-destructive and multiparametric character. Photoluminescence signals are, however, affected by wavelength-, polarization-, and time-dependent instrument specific effect and the compound-specific photoluminescence quantum yield. The former hamper the comparability of fluorescence measurements, while the relative determination of the latter requires suitable quantum yield standards with well-known photoluminescence quantum yields (QY). For the simple correction of instrument specific effects in the wavelength region of 300 nm to 950 nm, the set of the five certified spectral fluorescence standards BAM-F001 – BAM-F005, has been extended to the NIR range by including two new fluorescence standards currently under certification. For the reliable and accurate determination of QY which is the key performance parameter for the comparison of different luminophores, we certified a set of 12 quantum yield standards, which absorb and emit in the wavelength range from 300 nm to 1000 nm. T2 - Methods and Applications in Fluorescence CY - Gothenburg, Sweden DA - 11.09.2022 KW - Luminescence KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Certified reference material KW - Standard PY - 2022 AN - OPUS4-55914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -