TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Atomic force microscope study of friction at the submicron-scale during tribotests with self-mated steel N2 - Friction at the microscale during reciprocal sliding tribotests was studied for the first time with self-mated steel (100Cr6/AISI 52100) taking advantage of an atomic force microscope (AFM). To this aim, microsized steel particles were glued to the AFM-cantilever and employed as colloidal tips to perform tribotests on a steel disc. The torsion of the cantilever, which correlates with the friction force, was measured during the tests. Few tests with the same load did not yield any wear and show that the load and adhesion contributions to friction stay constant when the shape of the test particle does not change. Most of the presented tribotests engendered wear. For those tests, the increase of friction during the tribotests was attributed to the emerging plowing contribution. Furthermore, analysis of both torsion and local slope gives information on the creation of wear particles and their influence on friction. KW - Friction KW - Microtribology KW - Sliding KW - Wear PY - 2022 U6 - https://doi.org/10.1115/1.4054251 VL - 144 IS - 10 SP - 1 EP - 9 PB - ASME AN - OPUS4-54839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine T1 - Sliding behaviour of polymer materials in hydrogen N2 - This lecture deals with the sliding behaviour of polymer materials in hydrogen environment. After a short introduction of the hydrogen activities at BAM, the tribological performances of polymer materials in gaseous hydrogen are presented and compared with air and vacuum environment. The second part focusses on the influence of the counterface materials in hydrogen. Finally, the last section is dedicated to experiments liquid hydrogen. T2 - Invited lecture, TRIBOS+ program at Lulea University of Technology CY - Lulea, Sweden DA - 30.06.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-53708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine T1 - On the tribological behaviour of polymer composites in vacuum N2 - This lecture deals with the sliding behaviour of polymer composites in vacuum environment. At first, the effect of the polymer matrix and solid lubricants such as graphite and MoS2 are presented. The second part focusses on the influence of the residual pressure with experimental results obtained in high and ultrahigh vacuum. T2 - Invited lecture, TRIBOS+ program at Lulea University of Technology CY - Lulea, Sweden DA - 29.06.2021 KW - Polymers KW - Vacuum KW - Friction KW - Wear PY - 2021 AN - OPUS4-53710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Benchmarking of polymer materials for tribological applications in hydrogen N2 - The focus of this study is to evaluate of hydrogen on the friction and wear behavior of a wide range of polymer materials. Thereby, the tribological performance of filled and unfilled polymers from different suppliers were compared at room temperature in air and hydrogen gas (H2) as well as in liquid hydrogen at -253°C (LH2). T2 - 62. Tribologie-Fachtagung der Gesellschaft für Tribologie e. V. CY - Online meeting DA - 27.09.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-53700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Tribology of polymeric materials in gaseous and liquid hydrogen N2 - This presentation gives an overview of the tribological behaviour of polymeric materials in gaseous and luquid hydrogen. T2 - HYDROGENIUS-BAM Joint Hydrogen Symposium CY - Online meeting DA - 06.07.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-53701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine T1 - Friction and wear of polymer materials at cryogenic temperatures N2 - This lecture deals with the friction and wear of polymeric materials at cryogenic temperatures. The first part is dedicated to the low temperature properties of polymers and cryogenic environment as well as an introduction to cryotribology and friction models. The second part presents some experimental results, focusing on the effect of polymer composition, cryogenic media and stick-slip behaviour. T2 - Invited lecture, TRIBOS+ program at Lulea University of Technology CY - Lulea, Sweden DA - 29.06.2021 KW - Polymers KW - Cryogenic temperature KW - Friction KW - Wear PY - 2021 AN - OPUS4-53706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Scholz, C. A1 - Burbank, J. A1 - Spaltmann, Dirk T1 - Slip-rolling resistant steel alloys up to P0max of 3,920 MPa N2 - Downsizing (power-to-weight ratio) and higher speeds lead to a rise in Hertzian contact pressures in combination with an increase in surface or oil temperatures. Under such conditions, commonly used bearing steels, such as 100Cr6, reach their limits, creating a demand for alternative slip-rolling resistant steel alloys. The present work therefore compares the slip-rolling performance of various steel types with Maraging- and PM-type steel alloys such as e.g. CSS-42L™, ASP2012, BIMAX42+, in the Hertzian contact pressure range up to P0max of 4 GPa. Through-hardened 100Cr6H (AISI 52100), case-hardened 20MnCr5 (AISI 5120H) and nitrogen alloyed Croni-dur30 (AMS 5898) still compete in terms of slip-rolling and wear resistance and load carrying capacity, whereas Maraging- and PM-type steel alloys offer superior strength and toughness properties. KW - Steel KW - Alloy KW - Slip-rolling KW - Friction KW - Wear rate KW - Contact pressure KW - 100Cr6 KW - BIMAX42 KW - CSS-42L KW - ASP20212 PY - 2012 U6 - https://doi.org/10.1016/j.wear.2021.203707 VL - 474-475 SP - 203707 PB - Elsevier B.V. AN - OPUS4-52549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Benchmarking of polymer materials for tribological applications in hydrogen N2 - The focus of this study is to evaluate the influence of hydrogen on the friction and wear behavior of a wide range of polymer materials. Thereby, the tribological performance of filled und unfilled polymers from different suppliers were compared at room temperature in air and hydrogen gas (H2) as well as in liquid hydrogen at -235°C (LH2). T2 - 23rd International Conference on Wear of Materials CY - Online meeting DA - 26.04.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-52651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Investigation of the thermal and tribological performance of localized laser dispersed tool surfaces under hot stamping conditions N2 - In the automotive industry, hot stamping has been established as a key technology for manufacturing safety-relevant car body components with high strength-to-weight ratio. However, hot stamping tools are stressed by cyclic thermo-mechanical loads, which leads to severe wear and high friction during the forming operation. Consequently, the quality of the parts, the durability of the tools and the efficiency of the process are negatively affected. Within the scope of this work, a promising approach named laser implantation process has been investigated for improving the tribological behavior of hot stamping tools. This technique enables the fabrication of highly wear resistant, separated and elevated micro-features by embedding hard ceramic particles into the tool via pulsed laser radiation. Hence, highly stressed tool areas can be modified, which influences the thermal and tribological interactions at the blank-die interface. To clarify these cause-effect relations, numerical simulations, quenching tests as well as tribological investigations have been conducted. In this context, laser-implanted tools reveal a significantly improved tribological performance while offering the possibility to adjust the thermal properties within hot stamping. Based on these results, a tailored tool modification can be pursued in future research work, in order to enhance the effectiveness of hot stamping tooling systems. KW - Hot stamping KW - Laser Implantation KW - Surface structuring KW - Wear KW - Friction PY - 2021 U6 - https://doi.org/10.1016/j.wear.2021.203694 VL - 476 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-52988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Friction and mechanical properties of AFM-scan-induced ripples in polymer films N2 - In the present paper, friction and mechanical properties of AFM-Scan-Induced ripple structures on films of polystyrene and poly-n-(butyl methacrylate) are investigated. Force volume measurements allow a quantitative analysis of the elastic moduli with nanometer resolution, showing a contrast in mechanical response between bundles and troughs. Additionally, analysis of the lateral cantilever deflection shows a clear correlation between friction and the sample topography. Those results support the theory of crack propagation and the formation of voids as a mechanism responsible for the formation of ripples. This paper also shows the limits of the presented measuring methods for soft, compliant, and small structures. KW - AFM KW - Polymer KW - Ripples KW - Mechanical properties KW - Friction PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532772 SN - 2297-3079 VL - 7 SP - 1 EP - 8 PB - Frontiers Media CY - Lausanne AN - OPUS4-53277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -