TY - CONF A1 - Rosemann, Paul A1 - Kauss, N. T1 - Visualisierung werkstoffbedingter Lochkorrosionsanfälligkeit durch die KorroPad-Prüfung T2 - Tagungsband zum 20. Werkstofftechnischen Kolloquium N2 - Mit der KorroPad-Prüfung können lochkorrosionsanfällige Oberflächenbereiche einfach, schnell und kostengünstig nachgewiesen werden. Das KorroPad ist damit für Hersteller, Verarbeiter, Anwender und Forscher eine interessante Alternative zu zeitintensiven Auslagerungsversuchen und elektrochemischen Untersuchungsmethoden, die normalerweise bei der Charakterisierung nichtrostender Stähle zur Anwendung kommen. Mit der KorroPad-Prüfung können auch werkstoff- und gefügebedingte Einflussfaktoren sichtbar gemacht werden, die Lochkorrosionsanfälligkeit verursachen. Um dies zu veranschaulichen, wird die Nachweisgrenze des KorroPads an Referenzlegierungen mit abgestuftem Chromgehalt aufgezeigt. Darauf aufbauend wird dargestellt, wie die Sensibilisierung nichtrostender Stähle durch Chromverarmung mit einer gezielten Verschärfung der KorroPad-Prüfung nachgewiesen werden kann. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - KorroPad KW - Korrosion KW - Nichtrostender Stahl KW - Lochkorrosion KW - Korrosionsbeständigkeit KW - Korrosionsschutz KW - Passivschicht PY - 2018 SN - 978-3-00-058901-0 SN - 1439-1597 VL - 72 SP - 67 EP - 73 PB - Eigenverlag CY - Chemnitz AN - OPUS4-44557 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Halle, T. T1 - Sensibilisierungsverhalten vom stickstofflegierten, austenitischen, nichtrostenden Stahl 1.4456 T2 - Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik N2 - Austenitische nichtrostende Stähle kommen seit vielen Jahren in den verschiedensten industriellen Zweigen zum Einsatz (Pharma-, Medizin- und Lebensmittelindustrie, Bauwesen, Energie- und Antriebstechnik). Druckaufgestickte nichtrostende Austenite mit ca. 19 Gew.-% Mangan und 0,8 Gew.-% Stickstoff, sind als nickelfreie Variante seit einigen Jahren großtechnisch auf dem Markt verfügbar. In diesen Stählen wird die austenitische Matrix ohne die Legierungszugabe von Nickel sichergestellt, während gleichzeitig die korrosive Beständigkeit und die mechanischen Eigenschaften verbessert werden. Wie bei allen nichtrostenden Stählen beeinflussen die chemische Zusammensetzung und die Wärmebehandlung entscheidend das Gefüge und die Eigenschaften. Durch Lösungsglühen, Abschrecken und gezieltes Kaltverfestigen können bei diesen Stählen hervorragende mechanische Kennwerte erreicht werden (Rm von 900 MPa bis 2.000 MPa, A5 > 50 %, Av > 350 J). In der Regel dient das Lösungsglühen der Beseitigung unerwünschter Ausscheidungsphasen (Cr2N, M23C6 und Sigma-Phase) und der homogenen Verteilung der Legierungselemente im Austenit, was auch die Voraussetzung für eine hohe Korrosionsbeständigkeit darstellt. Wird die homogene Verteilung der Legierungselemente (Cr, Mo und N) durch suboptimale Wärmebehandlungs-, Verarbeitungs- oder Einsatzbedingungen beeinträchtigt, kann die korrosive Beständigkeit nicht auf Dauer gewährleistet werden. Daher ist die genaue Kenntnis vom Sensibilisierungsverhalten dieser hochstickstofflegierten Stähle unerlässlich. Am stickstofflegierten Werkstoff 1.4456 (X8CrMnMoN18-18-2) wird das Sensibilisierungsverhalten am lösungsgeglühten Zustand durch die gezielte Variation der Warmauslagerungsparameter untersucht. Dabei wird im Temperaturbereich von 500 °C bis 900 °C die Glühdauer systematisch variiert, um zu ermitteln, wann Ausscheidungen im Gefüge auftreten und ob diese die Korrosionsbeständigkeit beeinträchtigen. Die verschiedenen Sensibilisierungszustände werden mit dem EPR Verfahren, der KorroPad-Prüfung und dem REM vergleichend untersucht. Zur besseren Interpretation der experimentellen Ergebnisse werden auch thermodynamische Berechnungen genutzt, welche die Existenzbereiche der verschiedenen Ausscheidungsphasen vorhersagen. Damit kann die Veränderung der Korrosionsbeständigkeit mit dem Auftreten der verschiedenen Phasen korreliert und die Anwendbarkeit der experimentellen Methoden für stickstofflegierte Stähle nachgewiesen werden. T2 - 16. Sommerkurs Werkstoffe und Fügen CY - Magdeburg, Germany DA - 08.09.2017 KW - Nichtrostender Stahl KW - Wärmebehandlung KW - Korrosion KW - Stickstoff KW - EPR KW - KorroPad KW - ThermoCalc PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 79 EP - 86 AN - OPUS4-41890 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Kauss, N. A1 - Halle, T. T1 - Einfluss der Wärmebehandlung auf Mikrostruktur und Korrosionsverhalten kohlenstoffhaltiger nichtrostender Stähle T2 - Tagungsband zum 20. Werkstofftechnischen Kolloquium N2 - Das Korrosionsverhalten von kohlenstoffhaltigen martensitischen nichtrostenden Stählen variiert in Abhängigkeit der Wärmebehandlung (WB) und der damit eingestellten Mikrostruktur deutlich stärker als bei kohlenstoffarmen ferritischen und austenitischen nichtrostenden Stählen. Bei erhöhtem Kohlenstoffgehalt bestimmt die diffusionsgesteuerte Bildung und Auflösung von Chromkarbiden die Verteilung von Chrom und Kohlenstoff im Gefüge. Bisher lag der Fokus von Forschungsarbeiten zum Einfluss der WB auf dem Anlassen im allgemein bekannten Sensibilisierungsbereich dieser Werkstoffgruppe zwischen 200 °C und 700 °C und der dort auftretenden Chromverarmung. Mit der gezielten WB des X46Cr13 (1.4034) wird gezeigt, dass Temperatur und Dauer beim Austenitisieren sowie die anschließende Abkühlung beim Härten das Korrosionsverhalten schon vor dem Anlassen signifikant beeinflussen. Auf der Basis von thermodynamischen Berechnungen wurden definierte WB ausgewählt, um gezielt unterschiedliche Volumengehalte von Chromkarbiden im Gefüge und somit auch unterschiedliche Chrom bzw. Kohlenstoffgehalte im Mischkristall zu erzeugen. Anschließend wurden die resultierenden Gefügezustände hinsichtlich Chromkarbidanteil und Härte verglichen und das Korrosionsverhalten mit der elektrochemisch potentiodynamischen Reaktivierung (EPR) sowie durch einen Schnelltest mit der KorroPad-Prüfung untersucht. Dabei konnte ein direkter Zusammenhang zwischen WB, Mikrostrukturänderungen und Korrosionsverhalten festgestellt werden. Mit steigender Austenitisierungstemperatur wird der Anteil an Chromkarbiden reduziert und der Kohlenstoff- und Chromgehalt der Matrix erhöht, bis eine vollständige Auflösung der Chromkarbide gegeben und die chemische Nennzusammensetzung der Legierung im Mischkristall erreicht ist. In der direkten Folge wird die Ausbildung der für nichtrostende Stähle charakteristischen Passivschicht erleichtert und das Lochkorrosionsverhalten verbessert. Die Abkühlrate hat neben den Austenitisierungsparametern ebenfalls einen großen Einfluss auf das Korrosionsverhalten. So führt eine langsame Abkühlung an Luft zu einer Chromverarmung im Gefüge, die eine deutlich erhöhte Lochkorrosionsanfälligkeit zur Folge hat. In Abhängigkeit der WB von kohlenstoffhaltigen nichtrostenden Stählen können Mikrostruktur, Härte und Korrosionsbeständigkeit in einem weiten Bereich variieren. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Nichtrostender Stahl KW - Wärmebehandlung KW - EPR KW - KorroPad KW - Korrosionsbeständigkeit KW - ThermoCalc KW - Sensibilisierung KW - Martensitischer nichtrostender Stahl KW - Passivschicht PY - 2018 SN - 978-3-00-058901-0 SN - 1439-1597 VL - 72 SP - 711 EP - 720 PB - Eigenverlag CY - Chemnitz AN - OPUS4-44559 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Halle, T. T1 - Einfluss der Schweißnaht-Nachbehandlung auf die Korrosionsbeständigkeit vom Duplexstahl 1.4062 T2 - 16. Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik N2 - Der Duplexstahl 1.4062 (X2CrNi22-2) hat sich im Bauwesen als Werkstoffalternative zu den nichtrostenden Austeniten etabliert. Die Korrosionsbeständigkeit von Schweißverbindungen wird, neben dem Grundwerkstoff, dem Schweißzusatzwerkstoff und dem Schweißverfahren, auch sehr stark von der Schweißnaht-Nachbehandlung beeinflusst. Je nach zukünftigem Anwendungsbereich, geforderter Optik und Korrosionsbeständigkeit wird die Schweißnaht geschliffen, gebeizt, elektropoliert oder gestrahlt, um die beim Schweißen entstehenden An-lauffarben zu entfernen. Gestrahlte Oberflächen sind in der industriellen Praxis häufig anzutreffen, da sie deutlich schneller und kostengünstiger herzustellen sind als geschliffene, gebeizte oder polierte Oberflächen. Das Strahlen mit Korund ist außerdem effektiver als das Strahlen mit Glasperlen. In den letzten Jahren wurden korrosionsanfällige Oberflächen bei nichtrostenden Stählen beobachtet, wenn diese mit Korund geschliffen wurden. Daher wird nun auch beim Strahlen kritisch hinterfragt, ob die eingesetzten Strahlmittel die Korrosionsbeständigkeit beeinflussen. Diese Fragestellung wird beantwortet, indem geschliffene, gebeizte, polierte und mit verschiedenen Strahlmitteln gestrahlte Schweißverbindungen vom Duplexstahl 1.4062 im Vergleich zu gleichartig behandeltem Walzmaterial untersucht werden. Die Ergebnisse der Korrosionsuntersuchungen werden vorgestellt und mit den rasterelektronenmikroskopischen Untersuchungen der gestrahlten Oberflächen korreliert. T2 - 16. Sommerkurs Werkstoffe und Fügen CY - Magdeburg, Germany DA - 08.09.2017 KW - Duplexstahl KW - Nichtrostender Stahl KW - Schweißen KW - Oberflächenbearbeitung KW - Strahlen KW - Korrosion PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 63 EP - 70 AN - OPUS4-41888 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Halle, T. A1 - Rosemann, Paul T1 - Alterungsverhalten vom kupferaushärtenden martensitisch nichtrostenden Stahl 1.4542 T2 - Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik N2 - Der nichtrostende, aushärtbare Stahl 1.4542 (X5CrNiCuNb16-4) wird aufgrund der guten mechanischen Eigenschaften und der hohen Korrosionsbeständigkeit in einer Vielzahl von technischen Anwendungen eingesetzt. Das Verhältnis zwischen den mechanischen Eigenschaften und der Korrosionsbeständigkeit wird durch eine gezielte Wärmebehandlung eingestellt. Härte und Festigkeit werden durch die Bildung von fein verteilten Kupferausscheidungen bei der Warmauslagerung erreicht. Werden dabei auch Chromkarbide gebildet, reduziert sich gleichzeitig die Korrosionsbeständigkeit. Um den Einfluss der Warmauslagerung auf die Eigenschaften zu charakterisieren, wurden verschiedene Alterungszustände erzeugt und vergleichend untersucht. Dabei wurde außerdem der Einfluss einer starken Kaltumformung auf das Alterungsverhalten und die Korrosionsbeständigkeit untersucht. Zur Charakterisierung der Veränderungen wurden die Gefüge im REM untersucht und der magnetisierbare Anteil sowie die Vickershärte ermittelt. Zum Nachweis korrosionsanfälliger Zustände wurde die elektrochemisch potentiodynamische Reaktivierung (EPR) genutzt. Die Ergebnisse zeigen, dass die Kaltverfestigung die Ausscheidungskinetik beschleunigt und die Korrosionsbeständigkeit durch die Warmauslagerung bei 600 °C deutlich reduziert wird. T2 - 16. Sommerkurs Werkstoffe und Fügen CY - Magdeburg, Germany DA - 08.09.2017 KW - Nichtrostender Stahl KW - Wärmebehandlung KW - Korrosion KW - EPR KW - Kaltverfestigung PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 87 EP - 94 AN - OPUS4-41891 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -