TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Atomic force microscope study of friction at the submicron-scale during tribotests with self-mated steel JF - Journal of Tribology N2 - Friction at the microscale during reciprocal sliding tribotests was studied for the first time with self-mated steel (100Cr6/AISI 52100) taking advantage of an atomic force microscope (AFM). To this aim, microsized steel particles were glued to the AFM-cantilever and employed as colloidal tips to perform tribotests on a steel disc. The torsion of the cantilever, which correlates with the friction force, was measured during the tests. Few tests with the same load did not yield any wear and show that the load and adhesion contributions to friction stay constant when the shape of the test particle does not change. Most of the presented tribotests engendered wear. For those tests, the increase of friction during the tribotests was attributed to the emerging plowing contribution. Furthermore, analysis of both torsion and local slope gives information on the creation of wear particles and their influence on friction. KW - Friction KW - Microtribology KW - Sliding KW - Wear PY - 2022 DO - https://doi.org/10.1115/1.4054251 VL - 144 IS - 10 SP - 1 EP - 9 PB - ASME AN - OPUS4-54839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Reichelt, Manuel T1 - Origin of lognormal distribution of wear coefficient values JF - Tribology International N2 - Wear test results exhibit often large scattering. Hence, the study of spreading of experimental results requires big datasets. In various studies, wear coefficients were found to have lognormal distributions. Therefore, it was supposed that the wear coefficient is affected by two normally distributed variables, which combine through a product. In the present study, we demonstrate that a lognormal distribution may arise from a nonconstant wear coefficient, too, i.e., when a system does not follow Archard’s law. KW - Wear KW - Archard's law KW - Statistical distributions KW - Spreading PY - 2021 DO - https://doi.org/10.1016/j.triboint.2021.107207 SN - 0301-679X VL - 164 PB - Elsevier Ltd. AN - OPUS4-53100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Large scale multi-parameter analysis of wear of self-mated 100Cr6 steel - A study of the validity of Archard's law JF - Tribology International N2 - Considerable scattering of experimental wear results affects seriously the evaluation of repeatability and reproducibility of tribological measurements and hampers detecting, studying, and verifying tribological laws. An accurate characterization of the statistics of results, the detection of the influence of operating parameters, and the verification of equations describing tribological phenomena can be achieved only through the analysis of large datasets with wide variation of parameters. Taking advantage of more than 400 experiments performed with the same material pairing under the same conditions on four different tribometers, the repeatability and reproducibility of volumetric wear measurements has been evaluated using Welch's test. By testing Archard's law over seven orders of magnitude of sFN, it was found that this law is not universally valid and that, under certain conditions, the wear coefficient depends on sFN itself. KW - Wear KW - Archard's law KW - 100Cr6 steel KW - Scattering PY - 2021 DO - https://doi.org/10.1016/j.triboint.2021.106945 VL - 159 SP - 6945 PB - Elsevier Ltd. AN - OPUS4-52244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Spaltmann, Dirk A1 - Gee, M. T1 - Editorial: Tribology and Atomic Force Microscopy - Towards Single Asperity Contact JF - Frontiers in Mechanical Engineering N2 - The concept behind this Research Topic (RT) was to collect works, in which Atomic Force Microscopy (AFM) techniques are employed to study tribological phenomena and to push the resolution of measurements towards single asperity contact. Thanks to the direct determination of sample height with sub-nanometer resolution and the possibility of measuring local friction, AFM can be employed after a tribotest to detect topography and friction changes at the nanometer scale. Recently, efforts are being expended to use AFM cantilevers as tribometers, i.e., as probes altering the volume of suitable samples, thereby measuring tip and/or sample wear and friction at the nano/microscale. Thus, single asperity contact, friction, and wear can be investigated. Since friction and wear at the macroscale are the result of asperities interactions, such experiments are of great importance for better understanding of tribological processes. KW - Nanotribology KW - Friction KW - Wear KW - Single asperity KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571037 DO - https://doi.org/10.3389/fmech.2022.853934 SN - 2297-3079 VL - 8 SP - 1 EP - 2 PB - Frontiers Media CY - Lausanne AN - OPUS4-57103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Comparative analysis of error sources in the determination of wear volumes of oscillating ball-on-plane tests JF - Frontiers in Material Engineering N2 - The accurate determination of wear volumes is a prerequisite for the study of numerous tribological phenomena. Wear volumes can be measured with different techniques or else be calculated starting from some quantities measured from the wear scar. Advantages and drawbacks of the measuring techniques are shown by means of wear scars and calottes resulting from ball-on-plane tests with 100Cr6 specimens. When measuring wear volumes, white light interferometry results to be one of the most suitable techniques. When wear volumes are calculated, errors result mainly from two sources: (1) the arbitrary choice of one or few line profiles for the determination of the width and of the planimetric wear, and (2) approximations in the calculation, which are even necessary when values of the wear volumes of the single tribological partners and not only the total volume are of interest. The effect of both error sources on the accuracy in the determination of wear volumes is characterized and elucidated by examples. It is found that errors due to approximations are negligible when compared to errors due to the arbitrary choice of one line profile. KW - Error sources analysis KW - White light interferometry KW - Statistical analysis KW - AFM KW - Wear KW - Oscillating ball-on-disc test PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508407 DO - https://doi.org/10.3389/fmech.2020.00025 VL - 6 SP - Article 25 AN - OPUS4-50840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Influence of relative humidity on wear of self-mated 100 Cr6 steel JF - Wear N2 - The influence of relative humidity on friction and wear is subject of several studies in the last decades. A comprehensive understanding of physical and chemical phenomena affecting the tribology is hampered by the lack of reproducible experimental results, by the large number of variables, and by several difficulties in the detection of tribochemical processes and products. In the present work, we analyze the wear coefficient and the wear volumes of 686 unlubricated tests performed on different oscillating tribometers with 100Cr6 balls on 100Cr6 planes at different relative humidity. Aim of this work is to assess the repeatability and reproducibility of data, to determine the dependence of the wear coefficient on the relative humidity, to understand the underlying physicochemical phenomena and to build three dimensional maps of the wear coefficient as a function of both humidity and the product of normal force and sliding distance. KW - Wear KW - 100Cr6 KW - Relative humidity PY - 2020 DO - https://doi.org/10.1016/j.wear.2020.203239 VL - 450-451 SP - 203239 AN - OPUS4-50583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Application of contact-resonance AFM methods to polymer samples JF - Beilstein Journal of Nanotechnology N2 - Contact-resonance AFM (CR-AFM) has been used in recent years for the measurement of mechanical properties. Compared with other techniques, CR-AFM has a much shorter acquisition time, compensating the incomplete theoretical understanding of the underlying physical phenomena. In the present paper, we propose a procedure, which allows to determine the elastic modulus of the sample as a parameter of the fit of the CR frequency as a function of the load. It is concluded that CR measurements are not appropriate for polymer samples. Major drawbacks are the bad resolution for moduli lower than ca. 10 GPa and the lack of a comprehensive physical model. KW - Atomic force microscopy KW - Contact resonance KW - Mechanical properties KW - Polymers KW - Wear PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515621 DO - https://doi.org/10.3762/bjnano.11.154 VL - 11 SP - 1714 EP - 1727 AN - OPUS4-51562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -