TY - JOUR A1 - Arinchtein, A. A1 - Ye, M.-Y. A1 - Yang, Q. A1 - Kreyenschulte, C. A1 - Wagner, Andreas A1 - Frisch, M. A1 - Brückner, A. A1 - Kondratenko, E. A1 - Kraehnert, R. T1 - Dynamics of Reaction-Induced Changes of Model-Type Iron Oxide Phases in the CO2-Fischer-Tropsch-Synthesis JF - ChemCatChem N2 - Iron-based catalysts are employed in CO2-FTS due to their ability to convert CO2 into CO in a first step and their selectivity towards higher hydrocarbons in a second CO hydrogenation step. According to the literature, iron carbides represent the active phase for hydrocarbon formation and are claimed to emerge in the presence of CO. We propose nanostructured FeOx films as model systems to assess information about the complex phase transformations during CO2-FTS. Mesoporous hematite, ferrihydrite, maghemite, maghemite/magnetite films were exposed to CO2-FTS atmospheres at 20 bar and 300°C. Up to three distinct phases were observed depending on the timeon-stream (TOS): a sintered maghemite/magnetite phase, a carbidic core-shell structure, and a low-crystalline, needle-type oxide phase. Our findings indicate that the formation of an intermediary maghemite/magnetite phase, predominant after short TOS (30 h), precedes the evolution of the carbide phase. Yet, even after prolonged TOS (185 h), no full conversion into a bulk carbide is observed. KW - Nanostructured FeOx films KW - CO2 KW - Scanning Auger Spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549709 DO - https://doi.org/10.1002/cctc.202200240 SN - 1867-3880 VL - 14 IS - 14 SP - 1 EP - 11 PB - Wiley-VCH AN - OPUS4-54970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Falkenhagen, Jana T1 - Combined impact of UV radiation and nitric acid on high‐density polyethylene containers as a laboratory test JF - Packaging Technology and Science N2 - In a laboratory test, transparent high‐density polyethylene (HDPE) jerrycans have been exposed to both UV radiation and 55 wt‐% nitric acid solution at (41 ± 2)°C, for up to 20 days. For comparison, UV radiant exposure (21 days) and nitric acid exposure (up to 6 weeks) were performed separately, at nearly equal temperatures. The damages are compared with FTIR spectroscopy in ATR and HT‐gel permeation chromatography(GPC) on a molecular level and with hydraulic internal pressure testing as a component test. For the used jerrycans, relevant oxidation can only be found after the combined exposure. This is caused by the decomposition of nitric acid into nitrous gases by UV radiation, which is also observed at lower concentrations (28 wt‐%). After 6 days of laboratory exposure, this is rated as critical, which corresponds to about 1/10 year in Central Europe, according to the UV radiant exposure. The gradual increase in oxidative damage shows the reproducibility of the test. KW - Molecular mass distribution KW - High-density polyethylene KW - Nitric acid KW - UV radiation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550141 DO - https://doi.org/10.1002/pts.2673 SN - 0894-3214 SP - 1 EP - 7 PB - John Wiley & Sons Ltd AN - OPUS4-55014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinnasamy, R. A1 - Ravi, J. A1 - Pradeep, V.V. A1 - Manoharan, D. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Adaptable Optical Microwaveguides From Mechanically Flexible Crystalline Materials JF - Chemistry-A European Journal N2 - Flexible organic crystals (elastic and plastic) are important materials for optical waveguides, tunable optoelectronic devices, and photonic integrated circuits. Here, we present highly elastic organic crystals of a Schiff base, 1-((E)-(2,5-dichlorophenylimino)methyl)naphthalen-2-ol (1), and an azine molecule, 2,4-dibromo-6-((E)-((E)-(2,6-dichlorobenzylidene)hydrazono)methyl)phenol (2). These microcrystals are highly flexible under external mechanical force, both in the macroscopic and the microscopic regimes. The mechanical flexibility of these crystals arises as a result of weak and dispersive C−H⋅⋅⋅Cl, Cl⋅⋅⋅Cl, Br⋅⋅⋅Br, and π⋅⋅⋅π stacking interactions. Singly and doubly-bent geometries were achieved from their straight shape by a micromechanical approach using the AFM cantilever tip. Crystals of molecules 1 and 2 display a bright-green and red fluorescence (FL), respectively, and selective reabsorption of a part of their FL band. Crystals 1 and 2 exhibit optical-path-dependent low loss emissions at the termini of crystal in their straight and even in extremely bent geometries. Interestingly, the excitation position-dependent optical modes appear in both linear and bent waveguides of crystals 1 and 2, confirming their light-trapping ability. KW - Crystal growth KW - Fluorescence KW - Mechanophotonics KW - Micromanipulation KW - Optical waveguides PY - 2022 DO - https://doi.org/10.1002/chem.202200905 SN - 0947-6539 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-55018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Sanders, J. T1 - Quantitative reversible one pot interconversion of three crystalline polymorphs by ball mill grinding JF - Crystengcomm N2 - We demonstrate here using a disulfide system the first example of reversible, selective, and quantitative transformation between three crystalline polymorphs by ball mill grinding. This includes the discovery of a previously unknown polymorph. Each polymorph is reproducibly obtained under well-defined neat or liquid-assisted grinding conditions, revealing subtle control over the apparent thermodynamic stability. We discovered that the presence of a contaminant as low as 1.5% mol mol−1 acting as a template is required to enable all these three polymorph transformations. The relative stabilities of the polymorphs are determined by the sizes of the nanocrystals produced under different conditions and by surface interactions with small amounts of added solvent. For the first time, we show evidence that each of the three polymorphs is obtained with a unique and reproducible crystalline size. This mechanochemical approach gives access to bulk quantities of metastable polymorphs that are inaccessible through recrystallisation. KW - Mechanochemistry KW - Polymorph KW - XRD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549934 DO - https://doi.org/10.1039/D2CE00393G SP - 1 EP - 7 PB - Royal Society of Chemistry AN - OPUS4-54993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Plajer, A. J. T1 - Thioanhydride/isothiocyanate/epoxide ring-opening terpolymerisation: sequence selective enchainment of monomer mixtures and switchable catalysis JF - Polymer Chemistry N2 - We report a new sequence selective terpolymerisation in which three monomers (butylene oxide (BO) A, PhNCS B and phtalic thioanhydride (PTA) C) are selectively enchained into an (ABA′C)n sequence. PTA/PhNCS/BO ring-opening terpolymerisation ROTERP can be coupled with CS2 ROTERP to generate tetrapolymers and with εDL ROP in switchable catalysis for blockpolymer synthesis. KW - Blockcopolymer KW - 1H-NMR KW - TGA KW - DSC KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552339 DO - https://doi.org/10.1039/d2py00629d SP - 1 EP - 5 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-55233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Sn(II)2-ethylhexanoate-catalyzed polymerizations of L-lactide in solution – Solution grown crystals of cyclic Poly(L-Lactide)s JF - Polymer N2 - L-lactide (LA) was polymerized in toluene by means of neat tin(II) 2-ethylhexanoate (SnOct2). Concentration, time and temperature were varied. The isothermally crystallized polyLAs (PLA) were characterized in the virgin state with regard to topology, molar mass, melting temperature (Tm), crystal modification, high or low Tm morphology, crystallinity and crystal thickness. Even a small amount of solvent favored cyclization relative to polymerization in bulk, so that cyclic polylactides were obtained at 115 ◦C and even at 95 ◦C. At all temperatures the α-modification of PLA was obtained along with crystallinities up to 90%. With 6 M solution the high Tm morphology with Tm’s > 190 ◦C was obtained at 115 ◦C. The crystal thickness of crystallites grown from solution at 115 ◦C was on the average 10–20% higher than that of PLA polymerized in bulk. At a polymerization temperature of 75 ◦C cyclization was incomplete and fewer perfect crystallites were formed. A new hypothesis for the crystal growth of cyclic polyLAs is proposed. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Polymerization PY - 2022 DO - https://doi.org/10.1016/j.polymer.2022.125142 SN - 0032-3861 VL - 255 SP - 1 EP - 9 PB - Elsevier CY - Oxford AN - OPUS4-55283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kochovski, Z. A1 - Feldmann, Ines A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Ni- and Co-Struvites: Revealing Crystallization Mechanisms and Crystal Engineering toward Applicational Use of Transition Metal Phosphates JF - Crystal Growth & Design N2 - Industrial and agricultural waste streams (waste water, sludges, tailings, etc.) which contain high concentrations of NH4+, PO43–, and transition metals are environmentally harmful and toxic pollutants. At the same time, phosphorous and transition metals constitute highly valuable resources. Typically, separate pathways have been considered to extract hazardous transition metals or phosphate independently from each other. Investigations on the simultaneous removal of multiple components have been carried out only to a limited extent. Here, we report the synthesis routes for Ni- and Co-struvites (NH4MPO4·6H2O, M = Ni2+ and Co2+), which allow for P, ammonia, and metal co-precipitation. By evaluating different reaction parameters, the phase and stability of transition metal struvites as well as their crystal morphologies and sizes could be optimized. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P) ratios, whereas Co-struvite only forms at low M/P ratios. Detailed investigations of the precipitation process using ex situ and in situ techniques provided insights into the crystallization mechanisms/crystal engineering of these materials. M-struvites crystallize via intermediate colloidal amorphous nanophases, which subsequently aggregate and condense to final crystals after extended reaction times. However, the exact reaction kinetics of the formation of a final crystalline product varies significantly depending on the involved metal cation in the precipitation process: several seconds (Mg) to minutes (Ni) to hours (Co). The achieved level of control over the morphology and size makes precipitation of transition metal struvites a promising method for direct metal recovery and binding them in the form of valuable phosphate raw materials. Under this paradigm, the crystals can be potentially up-cycled as precursor powders for electrochemical or (electro)catalytic applications, which require transition metal phosphates. KW - Crystallization KW - Struvite KW - Nickel KW - Cobalt KW - Phosphorous recovery KW - Up-cycling KW - Aqueous synthesis PY - 2022 DO - https://doi.org/10.1021/acs.cgd.2c00284 VL - 22 IS - 7 SP - 4305 EP - 4315 PB - ACS Publications CY - Washington D.C. AN - OPUS4-55286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, P. M. A1 - Kjærvik, Marit A1 - Willneff, E. A. A1 - Unger, Wolfgang T1 - In-depth analysis of iodine in artificial biofilm model layers by variable excitation energy XPS and argon gas cluster ion sputtering XPS JF - Biointerphases N2 - Here, we present a study on agarose thin-film samples that represent a model system for the exopolysaccharide matrix of biofilms. Povidone-iodide (PVP-I) was selected as an antibacterial agent to evaluate our x-ray photoelectron spectroscopy (XPS)-based methodology to trace specific marker elements, here iodine, commonly found in organic matrices of antibiotics. The in-depth distribution of iodine was determined by XPS analyses with variable excitation energies and in combination with argon gas cluster ion beam sputter cycles. On mixed agarose/PVP-I nanometer-thin films, both methods were found to solve the analytical task and deliver independently comparable results. In the mixed agarose/PVP-I thin film, we found the outermost surface layer depleted in iodine, whereas the iodine is homogeneously distributed in the depth region between this outermost surface layer and the interface between the thin film and the substrate. Depletion of iodine from the uppermost surface in the thin-film samples is assumed to be caused by ultrahigh vacuum exposure resulting in a loss of molecular iodine (I2) as reported earlier for other iodine-doped polymers. KW - Biofilm KW - XPS KW - Argon gas cluster ion sputtering KW - Variable excitation KW - Iodine PY - 2022 DO - https://doi.org/10.1116/6.0001812 SN - 1934-8630 VL - 17 IS - 3 SP - 1 EP - 8 PB - AVS AN - OPUS4-54973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chabbah, T. A1 - Chatti, S. A1 - Zouaoui, F. A1 - Jlalia, A. A1 - Gaiji, H. A1 - Abderrazak, H. A1 - Casablanca, H. A1 - Mercier, R. A1 - Weidner, Steffen A1 - Errachid, A. A1 - Marestin, C. A1 - Jaffrezic-Renault, N. T1 - New poly(ether-phosphoramide)s sulfides based on green resources as sensitive films for the specific impedimetric detection of nickel ions JF - Talanta N2 - For the development of selective and sensitive chemical sensors, we have developed a new family of poly(etherphosphoramide) polymers. These polymers were obtained with satisfactory yields by nucleophilic aromatic polycondensation using isosorbide as green resources, and bisphenol A with two novel difluoro phosphinothioic amide monomers. Unprecedented, the thiophosphorylated aminoheterocycles monomers, functionalized with two heterocyclic amine, N-methylpiperazine and morpholine were successfully obtained by nucleophilic substitution reaction of P(S)–Cl compound. The resulting polymers were characterized by different analytical techniques (NMR, MALDI–ToF MS, GPC, DSC, and ATG). The resulting partially green polymers, having tertiary phosphine sulfide with P–N side chain functionalities along the main chain of polymers are the sensitive film at the surface of a gold electrode for the impedimetric detection of Cd, Ni, Pb and Hg. The bio-based poly(etherphosphoramide) functionalized with N-methylpiperazine modified sensor showed better analytical performance than petrochemical based polymers for the detection of Ni2+. A detection limit of 50 pM was obtained which is very low compared to the previously published electrochemical sensors for nickel detection. KW - Poly(ether-phosphoramide)s sulfides KW - Green chemistry KW - Polymer film KW - MALDI TOF MS PY - 2022 DO - https://doi.org/10.1016/j.talanta.2022.123550 VL - 247 IS - 123550 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-54980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed Aejaz A1 - Smales, Glen Jacob A1 - ZhuoQing, Li A1 - Yildirim, Arda A1 - Wuckert, E. A1 - Eutionnat, S. A1 - Demel, F. A1 - Huber, P A1 - Lasachat, S. A1 - Schönhals, Andreas T1 - Side Chain Length-Dependent Dynamics and Conductivity in Self-Assembled Ion JF - The Journal of Physical Chemistry C N2 - We study the molecular mobility and electrical conductivity of a homologous series of linear shaped columnar ionic liquid crystals ILCn, (n = 8, 10, 12, 14, 16) using broadband dielectric spectroscopy (BDS), specific heat spectroscopy (SHS), and X-ray scattering. We aim to understand how the alkyl chain length influences the dynamics and electric conductivity in this system. Two dielectrically active relaxation modes are observed, the γ and the αcore process, that correspond to the localized fluctuations of the alkyl chains and cooperative motions of the aromatic core in the columns, respectively. Both the γ relaxation and the αcore process slow down with increasing alkyl chain length. SHS reveals one relaxation process, the αalkyl process that has a similar temperature dependence as that of the αcore process for ILC12, 14, and 16 but shifts to higher temperature for ILC8 and 10. For ILC12, 14, and 16, the absolute values of DC conductivity increase by 4 orders of magnitude at the transition from the plastic crystalline to hexagonal columnar phase. For ILC8 and 10, the DC conductivity behavior is similar to ionic liquids, where the conductivity is coupled with structural relaxation. Small-angle X-ray investigations reveal that both the intercolumnar distance and the disorder coherence length increase with alkyl chain length; conversely, the DC conductivity decreases monotonically. KW - Ionic Liquid Crystals PY - 2022 DO - https://doi.org/10.1021/acs.jpcc.2c03023 SN - 1932-7447 VL - 126 IS - 27 SP - 10995 EP - 11006 PB - ACS AN - OPUS4-55194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -