TY - CONF A1 - Schönhals, Andreas T1 - Structure-property relationships of nanocomposite based on polylactide and layered double hydroxides as nanofiller N2 - Polymer-based nanocomposites attracted recently a lot of attention from both the applicative and fundamental point of research. While the former point of view is due to the properties improvement compared to the corresponding matrix polymers the latter aspect is related to interaction of polymers with solid surfaces and confinement effects. Here, nanocomposites based on poly(L-lactide) (PLA), which is a semi-crystalline polymer, and organically modified Layered Double Hydroxides (LDH) were prepared by melt blending, and investigated by a combination of Differential Scanning Calorimetry (DSC), Small- and Wide-Angle X-ray Scattering (SAXS, WAXS), and dielectric spectroscopy (BDS). Two different LDH materials were considered, which results in different morphologies of the nanocomposites. The influence of these different morphologies on the properties of the nanocomposites especially on the molecular mobility is discussed in detail. In general the structure of semi-crystalline polymers has to be described by a three phase model, consisting of a mobile amorphous (MAF), a crystalline (CF), and a rigid amorphous fraction (RAF). For nanocomposites based on semi-crystalline polymers the RAF is due to both the crystallites (RAFcrystal) and the filler (RAFfiller). The considered nanocomposites were further investigated by hyper and temperature modulated differential scanning calorimetry. For the first time the different phase fractions CF, MAF, RAFcrystal, and RAFfiller could be estimated independently from each other. T2 - Soft Matter Seminar Universität Halle CY - Halle, Germany DA - 21.11.2017 KW - Polymer based nanocomposites PY - 2017 AN - OPUS4-43098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Leng, Jing A1 - Wurm, Andreas A1 - Schick, Christoph T1 - Crystallization behavior of nanocomposites based on poly(L-lactide) and layered doubled hydroxides – Unbiased determination of the rigid amorphous phase due to the crystals and the nanofiller N2 - Semicrystalline polymers have to be described by a three phase model consisting of a mobile amorphous (MAF), a crystalline (CF), and a rigid amorphous fraction (RAF). For nanocomposites based on a semicrystalline polymer the RAF is due to both the crystallites (RAFcrystal) and the filler (RAFfiller). In most cases a separation of both contributions is not possible without further assumptions. Polymer nanocomposite based on poly(L-lactide) and MgAl layered double hydroxide nanofiller were prepared. Due to the low crystallization rate of PLA its crystallization can be suppressed by a high enough cooling rate, and the RAF is due only to the nanofiller. The MAF, CF, and RAF were estimated by Temperature Modulated DSC. For the first time CF, MAF, RAFcrystal, and RAFfiller could be estimated. It was found, that RAFfiller increases linearly with the concentration of the nanofiller. Furthermore, RAFcrystal is only slightly influenced by the presence of the nanofiller. T2 - Marchmetting American Physical Society CY - New Orleans, USA DA - 13.03.2017 KW - Nanocomposites PY - 2017 AN - OPUS4-39554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas T1 - Broadband dielectric spectroscopy as a complementary tool to characterize polymer systems N2 - The basics of broadband dielectric spectroscopy were introduced in detail. The analysis of the data was discussed. As application of broadband dielectric spectroscopy the alpha-relaxation (dynamic glass transition) and the chain dynamics of polymers were ilustrated. Further the application of dielectric spectroscopy to polymerbased nanocomposites and high preformance polymers was discussed in Detail. T2 - International Symposium on Polymer Analyisis and Characterization CY - Linz, Austria DA - 11.06.2017 KW - Broadband dielectric spectroscopy PY - 2017 AN - OPUS4-40602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas T1 - Polymer-based nanocomposites – Interplay between interfacial and bulk properties N2 - Different types of polymerbased nanocomposites (matrix materials: polyethylene, polypropylene, polylactide, polycarbonate, polystyrene) with a broad variety of nanofillers (fillers: layered silica, layered doubled hydroxides, POSS) are prepared where the concentration of the particles is varied. For layered fillers TEM images show both an intercalated and exfoliated morphology in dependence on the nanofiller and the matrix. All systems are studied in detail by dielectric spectroscopy (BDS) but also complementary methods like WAXS, SAXS, gas transport measurements, calorimetry, and FTIR spectroscopy are employed. Besides the dispersion, the interfacial region between the nanoparticles and the polymer matrix is crucial for the properties of the nanocomposites. Therefore, attention is paid to investigate this interfacial area by BDS because the polar groups of both the surfactant and compatibilizer are located close to the layers. For some systems it is found that the molecular mobility in the interfacial area is essentially higher than in the matrix. In addition a Maxwell/Wagner/Sillars polarization is found due to the blocking of charges at the layers. The time constant of this MWS-process can be correlated with characteristic length scales in the nanocomposites and provides information about the dispersion of the nanofiller. T2 - International Symaposium on Polymer Ananlysis and Characterization CY - Linz, Austria DA - 11.06.2016 KW - Polymer based nanocomposites KW - Broadband dielectric spectroscopy PY - 2017 AN - OPUS4-40604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas T1 - Broadband dielectric spectroscopy in comparison to other spectroscopic methods applied to functional materials N2 - The basics of broadband dielectric spectroscopy were introduced in detail. The analysis of the data was discussed. As application of broadband dielectric spectroscopy the alpha-relaxation (dynamic glass transition) and the chain dynamics of polymers were illustrated. Further the application of dielectric spectroscopy to advanced functional materials. T2 - International Summer School on Crystal Growth and Advanced Materials for Energy Conversation CY - Bucharest, Romania DA - 10.07.2017 KW - Broadband dielectric spectroscopy PY - 2017 AN - OPUS4-41024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Krause, Christina A1 - Zorn, R. A1 - Frick, Bernhard T1 - Molecular dynamics of discotic liquid crystals in the bulk and embedded in nanochanels N2 - Discotic liquid crystals (DLCs) are self-assembled materials where self-assembly is driven by non-covalent intermolecular interactions. The corresponding molecules consist of a flat and rigid aromatic core substituted by flexible aliphatic side chains. While the former is responsible for the π-stacking, the latter gives rise to an increased solubility, processability, and rich thermotropic behavior. The disc-shaped molecules form columns that further assemble into two-dimensional arrays with a hexagonal mesophase. The alkyl chains fill the intracolumnar space giving rise to a nanophase separated state. These soft matter materials with highly ordered columnar structures have a great potential in molecular electronic devices such as active semiconductors in organic field-effect transistors and photovoltaic devices with a charge carrier mobility of up to 1.1 cm2/Vs. Two different homologous systems based on triphenylene derivatives were investigated as model systems for DLCs where the length of the aliphatic side chains is widely varied. Structural information is retrieved by X-ray diffraction carried out on a synchrotron. Experiments were carried out in the bulk state and confined to the nanometer wide channels of anodic aluminum membranes (Pore diameter 20 nm, 40nm, 80 nm and 180 nm). The latter case can be considered as a promising way to prepare nanowires. As method broadband dielectric spectroscopy (frequency range 10-2 Hz to 109 Hz) is employed. These experiments were accompanied by thermal investigations (Differential Scanning Calorimetry as well as Thermogravimetric Analysis) as well as inelastic neutron scattering (neutron Time-of-Flight and neutron Backscattering). The dynamics of these unique soft matter materials are discussed in detail considering their structure (length of the aliphatic side chain), the effect of self-confinement (of the aliphatic chains in the intracolumnar space) and of the outer confinement (influence of the pore size). Comparison is further made to a pyrene based system. T2 - THE 9th INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS, ROCAM 2017 CY - Bucharest, Romania DA - 11.07.2017 KW - Dicotic liquid crystals PY - 2017 AN - OPUS4-41023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Madkour, Sherif A1 - Szymoniak, Paulina T1 - Complex dynamics of ultra-thin films of blends of polystyrene/ poly(vinyl methyl ether) by nanosized relaxation spectroscopy N2 - In the course of miniaturizing modern technology down to the molecular scale, understanding the materials behavior has to be investigated and deviations from the bulk have to be understood. A combination of nano-sized relaxation spectroscopies (Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS)) employing AC nanochip calorimetry were utilized to investigate the glassy dynamics of ultra-thin films of blends of Poly (vinyl methyl ether) (PVME) / Polystyrene (PS) (50:50 and 25/75 wt-%), which are miscible in the bulk (thicknesses: 8nm - 200nm, film thickness was controlled by ellipsometry, film topography by AFM). Both methods are sensitive to different probes; where SHS senses entropy fluctuations BDS measures dipole fluctuations. For BDS measurements, a recently developed nano-structured electrode sample arrangement is employed. By measuring the dynamic glass transition in dependence of the film thickness, SHS showed that the Tg of the whole film was strongly influenced by a nanometer-thick surface layer at the polymer/air interface due to a self-assembling process. Compared to the SHS results the BDS measurements show a completely different behavior. At high temperatures the temperature dependence of the relaxation times of the films follows that of bulk-like PS/PVME obeying the VFT-law. With decreasing temperature the temperature dependence deviates from the VFT to an Arrhenius law where the apparent activation energy decreases with decreasing film thickness. This is the first example were confinement induced changes were observed by BDS for ultra-thin films. All results were analyzed in detail in a comprehensive discussion. T2 - 8th International Discussion Meeting Relaxation in Complex Systems CY - Wisla, Poland DA - 23.07.2017 KW - Ultra thin polymer films PY - 2017 AN - OPUS4-41171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Yildirim, Arda A1 - Krause, Christina T1 - Dielectric relaxation of discotic liquid crystals N2 - The molecular dynamics of the discotic liquid crystals like pyrene-1,3,6,8-tetracarboxylic tetra(2-ethylhexyl) ester is studied by dielectric relaxation spectroscopy. Dielectric spectroscopy shows 3 processes: a b-relaxation at low temperatures and an a-relaxation in the temperature range of the mesophases followed by conductivity. The dielectric a-relaxation is assigned to a restricted glassy dynamics in the plastic crystal as well as in the liquid crystalline phase. T2 - 16th International Symposium on Electretes CY - Leuven, Belgium DA - 04.09.2017 KW - Discotic liquid crystals PY - 2017 AN - OPUS4-41887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -