TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. T1 - Cutting tool materials niobium carbide (NbC) substituting tungsten carbide and cermets N2 - The present paper illuminates the metallurgical progress on niobium carbide based hard metal developments, which are characterized by: a.) the substitution of cobalt binder by nickel, b.) the change from SPS to conventional sintering and c.) by switching from lab to pilot scale. The toughness was increased in the frame of these developments without loosening the hardness level. The hardness-toughness profile of NbC grades match those of WC and cermet grades. Apart from the aforementioned parameters, the properties depend from the powder processing and sintering conditions. The functional profile of nickel and NiMo bonded NbC versus cobalt bondedWC grades bonded by cobalt and nickel are benchmarked under dry sliding wear (T= 22/400°C; v= 0,1-10 m/s), abrasive wear (G65) and under dry turning and dry milling against different work piece alloys (C45E, 42CrMo4, 300WA, GG35, AlSi9Cu4Mg). The different elements explaining the wear resistance of NbC over WC will be illuminated. T2 - 73rd STLE Annual Meeting and Exhibition CY - Minneapolis, Minnesota, USA DA - 20.05.2018 KW - NbC KW - Cutting tool KW - Machining PY - 2018 AN - OPUS4-45852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Huang, S. A1 - Vleugels, J. A1 - Mohrbacher, H. T1 - Niobium carbide NbC as cutting tool material and for wear protection N2 - The present paper illuminates the metallurgical progress on niobium carbide based hard metal developments, which are characterized by: a.) the substitution of cobalt binder by nickel, b.) the change from SPS to conventional sintering and c.) by switching from lab to pilot scale. The toughness was increased in the frame of these develop¬ments without loosening the hardness level. Stoichiometric and sub-stoichiometric, submicron NbC powders were used. The hardness-toughness profile of NbC grades match those of WC and cermet grades. Apart from the aforementioned parameters, the properties depend from the powder processing and sintering conditions. The functional profile of NbC and WC grades bonded by cobalt and nickel are benchmarked by 4-point bending strength, elastic moduli and hot hardness until 1000°C, dry sliding wear (T= 22/400°C; v= 0,1-10 m/s), abrasive wear (G65) and cutting performances under emulsion and coolant-free turning and milling against different alloys (C60, 100Cr6, 42CrMo4, X90CrMoV18, 300WA, GG35). T2 - 42nd International Conference and Exposition on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 21.01.2018 KW - NbC KW - Cutting tools KW - Wear PY - 2018 AN - OPUS4-45854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - Machining with niobium carbide based tools N2 - The presentation deals about Niobium Carbide, its location, mine, products, uses, consumtion, and its tribological properties like micro-hardness, density and elastic-modulus. T2 - 59. Tribologie-Fachtagung 2018 CY - Göttingen, Germany DA - 24.09.2018 KW - Niobium carbide KW - NbC KW - Machining KW - Hardness PY - 2018 AN - OPUS4-46168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - Tailoring the functional profile of niobium carbide (NbC) as cutting tool materials and for wear protection N2 - The present work deals with Niobcarbid (NbC). Strategic reflections on tungsten carbide and more and more stringent toxicological restrictions for cobalt associated for both with spiraling stock market prices have attracted recently some attention for Niobium carbide as a substitute for tungsten carbide in machining. T2 - WORLDPM2018 CY - Beijing, China DA - 16.09.2018 KW - Niobium carbide KW - NbC KW - Machining KW - Hard turning KW - Cobalt KW - Nickel PY - 2018 AN - OPUS4-46198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wägner, Yannick A1 - Binkowski, Sigrid A1 - Woydt, Mathias T1 - Charakterisierung von Hartstoffphasen in Gefügen N2 - Der Vortrag behandelt die Verbesserung der Verschleißbeständigkeit durch Hartstoffphasen in Metal Matrix Composites (MMC), Hartgusslegierungen, Hadfield-Stählen oder Werkzeugstählen. T2 - 15. Internationale Metallographie-Tagung CY - Leoben, Austria DA - 19.09.2018 KW - Verschleißbeständigkeit KW - Hartstoffphasen KW - NbC PY - 2018 AN - OPUS4-46055 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -