TY - CONF A1 - Bresch, Harald T1 - Core-shell systems - different cases N2 - Coating, stabilization layers, functionalization of particles or simple contamination are common variants of a core-shell system. For smaller nanoparticles this is of major importance. A particle with 16 nm diameter and a usual surface layer of 2 nm will have the same volume for the core as for the shell. In this case the material of the particle doesn’t have a clear definition. It is a common case that a particle consists of four different layers: Core, shell, stabilization layer and contamination. The properties of the particles differ according to this structure. For example silver particles might have a different dissolution rate for pure particles and for particles which are grown on top of a core. Different solubility or defined other properties of materials is a common reason for producing core-shell systems. Gold cores are surrounded by silica to stabilize them or to get a defined distance between the cores. Silica might be surrounded by gold and the silica dissolved afterwards. This delivers hollow shells. Another important example for core-shell systems are quantum dots. A small core is surrounded by a different material for increasing the photoluminescence. Furthermore there a stabilization layer is needed. The smallest part of the final particles is the initial core. The photoluminescence is based on this core, but the shells contain much more material. Categorization should address this. Core-shell systems are not covered by most of the existing decision trees for grouping. They are either regarded as special case or a singular layer. This disqualifies core-shell systems for grouping within the common models. There might be a very easy way to avoid this problem and even to combine some of the different decision trees. Starting the decision tree with the solubility of the outer shell and subsequently addressing the inner layers will be a pragmatic approach to solve the problem. If there is no shell, the categorization can start with a tiered approach or with the proposed “stawman” chemical categorization. If a shell is covering the surface there is a need to check if the shell is stable. If it is stable, the particle can be categorized based on this shell. If it is soluble, the ions need to be addressed as in the classic case. Furthermore the shell might increase the uptake by the cells. If the ions and the uptake are not critical the categorization can continue with the next layer. With this not perfect but pragmatic approach, the surface layers can be addressed with very limited additional efforts. Most criteria are based on classically tabulated data. Including a rating system like the precautionary matrix approach might even address the fact that some parameters are not always Yes/No, e.g. solubility, ion toxicity and uptake. T2 - OECD Expert Meeting on Grouping and Read Across for the Hazard Assessment of Manufactured Nanomaterials CY - Brussels, Belgium DA - 13.04.2016 KW - OECD KW - Nanoparticles KW - Nanomaterials KW - Grouping KW - Nano PY - 2016 AN - OPUS4-35774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chambers, Aaron T1 - Synthesis of functionalized ZIF nanoparticles for effective composite formation N2 - A presentation looking at ZIF-8 nanoparticles and functionalising them for more effective ZIF composite formation. T2 - UoB/BAM mini conference CY - Birmingham, UK DA - 06.10.2022 KW - MOF composite KW - 2PP KW - ZIF-8 KW - Nanoparticles PY - 2022 AN - OPUS4-56482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chambers, Aaron A1 - Smales, Glen A1 - Pauw, Brian Richard A1 - Yeung, Hamish T1 - Using an automation assisted Synthesis to produce functionalized ZIF-8 nanoparticles for effective composite formation N2 - This presentation details the progress of the PhD project so far. It discuss the background of the project such as what is a MOF, ZIF and ZIF composite before discussing the aims and approaches for the work. Then the presentation looks at the data obtained so far and the techniques/syntheses used. T2 - Postgraduate Researcher Symposium, University of Birmingham CY - Online meeting DA - 27.06.2023 KW - Automation KW - Nanoparticles KW - ZIF-8 KW - Composites PY - 2023 AN - OPUS4-57867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chambers, Aaron T1 - Synthesis of ZIF nanoparticles with functionalisation towards effective composite formation N2 - A presentation on functionalising ZIF-8 nanoparticles for composite formation. Characterisation data for the nanoparticles is shown. T2 - Materials Chemistry Seminar CY - Online meeting DA - 23.02.23 KW - MOF composite KW - Nanoparticles KW - ZIF-8 PY - 2023 AN - OPUS4-57210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. A1 - Homann, C. T1 - Progress report NaYF4:Yb,Er upconversion nanoparticles: determination of energy loss processes for the systematic enhancement of the luminescence efficiency N2 - A report on the progress of the PhD work on upconversion nanoparticles is given, showing lifetimes and quantum yields of single- and co-doped Yb,Er nanocrystals with and without inert shell. T2 - Arbeitsgruppenseminar Prof. Oliver Benson CY - Berlin, Germany DA - 23.10.2019 KW - Upconversion KW - Spectroscopy KW - Nanoparticles KW - Lifetime PY - 2019 AN - OPUS4-49754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Hodoroaba, Vasile-Dan T1 - Project 15 Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension N2 - The progress in the VAMAS Project #15" Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension" within TWA 34 Nanoparticle Populations is presented with highlight of the following points: - Determine and compare particle size and shape distribution by means of: • electron microscopy (SEM, TEM, STEM-in-SEM) • atomic force microscopy (AFM) • small angle X-ray scattering (SAXS) - Determine uncertainty induced by deposition protocol from liquid suspension with comparison to known values from a prior ILC with already deposited nanoparticles on TEM grids. - Provide comparative validation of protocols for the techniques other than TEM. T2 - VAMAS Regional Workshop 2023 CY - Online meeting DA - 24.01.2023 KW - Nanoparticles KW - VAMAS KW - Electron microscopy KW - AFM KW - SAXS KW - TiO2 PY - 2023 UR - https://www.bam.de/Content/EN/Events/2023/2023-01-24-vamas-regional-workshop.html AN - OPUS4-57220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Hodoroaba, Vasile-Dan T1 - Project 16 Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension N2 - The progress of the VAMAS Project 16 "Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension" in TWA 34 Nanoparticle Populations is presented. Follwowing points are discusssed: - Validate the performance of imaging methods to measure the relative number concentration • electron microscopy (SEM, TEM) and atomic force microscopy (AFM) • two modes of bimodal (30 and 60 nm) silica nanoparticles - Validate the performance of small angle X-ray scattering (SAXS) for the traceable measurement of the number concentration of the two modes. T2 - VAMAS Regional Workshop 2023 - What can pre-normative research do for industry? CY - Online meeting DA - 24.01.2023 KW - Nanoparticles KW - VAMAS KW - Inter-laboratory comparison KW - SiO2 KW - Electron microscopy KW - AFM PY - 2023 UR - https://www.bam.de/Content/EN/Events/2023/2023-01-24-vamas-regional-workshop.html AN - OPUS4-57221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Heilmann, Maria T1 - Nanoparticle Populations N2 - Two new projects P15 Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension and P16 Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension have been started at VAMAS/TWA 34 under the lead of BAM. First results are presented and discussed. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 47th Steering Committee Meeting CY - Turin, Italy DA - 18.10.2022 KW - VAMAS KW - Nanoparticles KW - Inter-laboratory comparison KW - Particle size distribution KW - Nanoparticle concentration PY - 2022 AN - OPUS4-56196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement - What nPSize can offer to ISO/TC 229? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities, e.g. reference materials, sample preparation protocols, measurement procedures, and data analysis, to be standardized and implemented in accredited analytical laboratories is discussed. Complementation and/or filling gaps of published and ongoing standardisation projects on size, shape and number concentration measurements under ISO/TC 229/JWG 2 are offered. The two VAMAS inter-laboratory comparisons resulted from the nSPize project and just started under TWA 34 Nanoparticle Populations (Projects #15 and #16) of bipyramidal TiO2 anatase and bimodal SiO2 nanoparticles are presented in detail. T2 - Interim Meeting of ISO/TC 229 Nanotechnologies - Strategy and Metrology Group CY - Online meeting DA - 09.05.2022 KW - Nanoparticles KW - Particle size distribution KW - Inter-laboratory comparison KW - Electron microscopy KW - AFM KW - SAXS KW - ISO/TC229 PY - 2022 AN - OPUS4-54819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Advanced Characterization of the Surface Morphology and Chemistry within nano@BAM N2 - Both essential aspects of the surface of solid matter, its morphology and chemistry, are studied traditionally at BAM starting in the 60’s with different cyclical research focus areas, mostly related either to applicative research or method development. In the recent years, the focus has shifted almost exclusively to the nano-analytics of advanced materials such as complex nanoparticles, (ultra)thin films/coatings, nanocomposites, 2D materials, energy materials, etc. This is also the reason why BAM has established recently the new Competence Center nano@BAM (www.bam.de/Navigation/DE/Themen/Material/Nanotechnologie/sichere-nanomaterialien.html) with the five sub-fields nanoCharacterisation, nanoMaterial, nanoSafety, nanoData and nanoTechnology. The link to the BAM central guidelines to the safety in technology and chemistry is given by the development of reference products such as reference measurement procedures, reference (nano)materials, and newly reference data sets. Thus, an internationally well-networked group in surface analysis has been established @BAM, with regular contributions to integral analytical characterization with metrological and standardization background. Examples of newly developed methodical approaches will be given with an emphasis on correlative nano-analysis of morphology and chemistry of nanomaterials. Correlative imaging by STEM-in-SEM with high-resolution SEM and EDX, and further with AFM or the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for surface chemistry will be highlighted. The panoply of advanced surface characterization methods @BAM is completed by discussing examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy with the highest surface-sensitive methods X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Particularly for the analysis of the surface chemistry of nanostructures, such as the completeness of the shells of core-shell nanoparticles or in-depth and lateral gradients of chemistry within mesoporous thin layers, the latter methods are inherent. Other special developments like approaches for the quantitative determination of the roughness of particle surface by electron microscopy or for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM will be presented. T2 - Seminar of the Academic Centre for Materials and Nanotechnology CY - Online meeting DA - 12.05.2022 KW - Nanoparticles KW - Thin films KW - Nano Characterisation KW - Nanomaterials KW - Surface morphology KW - Surface chemistry PY - 2022 UR - https://www.agh.edu.pl/en/info/article/seminar-advanced-characterization-of-the-surface-morphology-and-chemistry-within-nanobam/ AN - OPUS4-54820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -