TY - JOUR A1 - Tan, M. A1 - Monks, Melissa-Jane A1 - Huang, D. A1 - Meng, Y. A1 - Chen, X. A1 - Zhou, Y A1 - Lom, S.-F. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Chen, G. T1 - Efficient sub-15 nm cubic-phase core/Shell upconversion nanoparticles as reporters for ensemble and single particle studies† JF - Royal Society of Chemistry N2 - Single particle imaging of upconversion nanoparticles (UCNPs) has typically been realized using hexagonal (β) phase lanthanide-doped sodium yttrium fluoride (NaYF4) materials, the upconversion luminescence (UCL) of which saturates at power densities (P) of several hundred W cm−2 under 980 nm nearinfrared (NIR) excitation. Cubic (α) phase UCNPs have been mostly neglected because of their commonly observed lower UCL efficiency at comparable P in ensemble level studies. Here, we describe a set of sub-15 nm ytterbium-enriched α-NaYbF4:Er3+@CaF2 core/shell UCNPs doped with varying Er3+ concentrations (5–25%), studied over a wide P range of ∼8–105 W cm−2, which emit intense UCL even at a low P of 10 W cm−2 and also saturate at relatively low P. The highest upconversion quantum yield (ΦUC) and the highest particle brightness were obtained for an Er3+ dopant concentration of 12%, reaching the highest ΦUC of 0.77% at a saturation power density (Psat) of 110 W cm−2. These 12%Er3+-doped core/shell UCNPs were also the brightest UCNPs among this series under microscopic conditions at high P of ∼102–105 W cm−2 as demonstrated by imaging studies at the single particle level. Our results underline the potential applicability of the described sub-15 nm cubic-phase core/shell UCNPs for ensemble- and single particle- level bioimaging. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Surface chemistry KW - Single particle KW - Brightness PY - 2020 DO - https://doi.org/10.1039/d0nr02172e VL - 12 IS - 19 SP - 10592 EP - 10599 PB - Nanoscale AN - OPUS4-50908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zou, Q. A1 - Marcelot, C. A1 - Ratel-Ramond, N. A1 - Yi, X. A1 - Roblin, P. A1 - Frenzel, Florian A1 - Resch-Genger, Ute A1 - Eftekhari, A. A1 - Bouchet, A. A1 - Coudret, C. A1 - Verelst, M. A1 - Chen, X. A1 - Mauricot, R. A1 - Roux, C. T1 - Heterogeneous Oxysulfide@Fluoride Core/ Shell Nanocrystals for Upconversion-Based Nanothermometry JF - ACS Nano N2 - Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ultrasmall UCNPs has remained a challenge that must be undertaken if any practical applications are to be envisaged. Herein, we present a Ln3+-doped oxysulfide@fluoride core/shell heterostructure which shows efficient UCL properties under 980nm excitation and good stability in solution. Through epitaxial heterogeneous growth, a ∼4 nm optically inert β-NaYF4 shell was coated onto ∼5 nm ultrasmall Gd2O2S:20%Yb,1%Tm. These Gd2O2S:20%Yb,1%Tm@NaYF4 core/shell UCNPs exhibit a more than 800-fold increase in UCL intensity compared to the unprotected core, a 180-fold increase in luminescence decay time of the 3H4 → 3H6 Tm3+ transition from 5 to 900 μs, and an upconversion quantum yield (UCQY) of 0.76% at an excitation power density of 155 W/cm2. Likewise, Gd2O2S:20%Yb,2%Er@NaYF4 core/shell UCNPs show a nearly 5000-fold increase of their UCL intensity compared to the Gd2O2S:20%Yb,2%Er core and a maximum UCQY of 0.61%. In the Yb/Er core−shell UCNP system, the observed variation of luminescence intensity ratio seems to originate from a change in lattice strain as the temperature is elevated. For nanothermometry applications, the thermal sensitivities based on thermally coupled levels are estimated for both Yb/Tm and Yb/Er doped Gd2O2S@NaYF4 core/shell UCNPs. KW - Upconversion nanoparticle KW - Nanosensor KW - Lanthanide KW - Surface coating KW - Quantum yield KW - Photophysic PY - 2022 DO - https://doi.org/10.1021/acsnano.2c02423 SN - 1936-0851 SP - 1 EP - 11 PB - ACS Publications AN - OPUS4-55440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -