TY - CONF A1 - Kruschwitz, Sabine A1 - Oesch, Tyler A1 - Mielentz, Frank A1 - Meinel, Dietmar A1 - Stolpe, Heiko A1 - Spyridis, P. T1 - Evaluation of Advanced NDT-Methods for Measurement of Fibre Orientation in Concrete N2 - Integration of fibre reinforcement in high-performance cementitious materials has become widely applied in many fields of construction. One of the most investigated advantages of steel fibre reinforced concrete (FRC) is the deceleration of crack growth and hence it’s improved sustainability due to e.g. decrease of permeability of concrete by aggressive substances. Additional benefits are associated with the structural properties of FRC, where fibres can significantly increase the ductility and the tensile strength of concrete. In some applications, such as tunnel linings or industrial slabs, it is even possible to entirely replace the conventional reinforcement, leading to significant logistical and environmental benefits. Fibre reinforcement can, however, have critical disadvantages and even hinder the performance of concrete, since it can induce an anisotropic material behaviour of the mixture if the fibres are not appropriately oriented. For a safe use of FRC in the future, reliable non-destructive methods need to be identified to assess the fibres’ orientation in hardened concrete. In this study, ultrasonic material testing, electrical impedance testing, and X-ray computer tomography have been investigated for this purpose using specially produced samples with biased or random fibre orientations. This paper demonstrates the capabilities of each of these NDT techniques for fibre orientation measurements and draws conclusions based on these results about the most promising areas for future research and development using these techniques. T2 - fib2020 Shanghai CY - Online meeting DA - 22.11.2020 KW - Ultrasonic testing KW - Steel fibre reinforced concrete (FRC) KW - Fibre orientation KW - X-ray computed tomography (CT) KW - Electrical impedance PY - 2020 AN - OPUS4-51651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Alig, I. A1 - Oehler, H. A1 - Lellinger, D. A1 - Meinel, Dietmar A1 - Böhning, Martin T1 - Crack propagation in PE-HD induced by environmental stress cracking (ESC) analyzed by several imaging techniques N2 - Different imaging techniques were employed to monitor Full Notch Creep Test (FNCT) experiments addressing environmental stress cracking in more detail. The FNCT is a well-established test method to assess slow crack growth and environmental stress cracking of polymer materials, especially polyethylene. The standard test procedure, as specified in ISO 16770, provides a simple comparative measure of the resistance to crack growth of a certain material based on the overall time to failure when loaded with a well-defined mechanical stress and immersed in a liquid medium promoting crack propagation. Destructive techniques which require a direct view on the free fracture surface, such as light microscopy and laser scanning microscopy, are compared to non-destructive techniques, i.e. scanning acoustic microscopy and xray micro computed tomography. All methods allow the determination of an effective crack length. Based on a series of FNCT specimens progressively damaged for varied Durations under standard test conditions, the estimation of crack propagation rates is also enabled. Despite systematic deviations related to the respective Imaging techniques, this nevertheless provides a valuable tool for the detailed evaluation of the FNCT and its further development. KW - Environmental stress cracking (ESC) KW - Slow crack growth (SCG) KW - Full notch creep test (FNCT) KW - X-ray computed tomography (CT) KW - Laser scanning microscopy (LSM) KW - Scanning acoustic microscopy (SAM) PY - 2018 U6 - https://doi.org/10.1016/j.polymertesting.2018.08.014 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 544 EP - 555 PB - Elsevier AN - OPUS4-45766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -