TY - CONF A1 - Rhode, Michael A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Kurzbericht zum Projekt „Entwicklung von Wärmenachbehandlungskonzepten zur Vermeidung von Spannungsrelaxationsrissen an Bauteilen aus hochwarmfesten Stählen“ (DVS-Nr. 01.2261 / IGF-Nr. 20171 N) T2 - DVS Berichte 382: DVS CONGRESS 2022 Große Schweißtechnische Tagung DVS CAMPUS N2 - Komponenten aus dickwandigen, hochwarmfesten CrMoV-Stählen erfordern eine anspruchsvolle UP-Schweißverarbeitung. Dabei muss die notwendige Wärmenachbehandlung der Schweißnaht (PWHT) sicher beherrscht werden. Hier kann u.U. Bauteilversagen infolge von Spannungsrelaxationsrissbildung (SRR) auftreten. Bislang erfolgt die Beurteilung der SRR-Neigung primär über Ersatzgrößen, wie temperaturbedingte Änderung der Härte und Duktilität. Die Wirkung der konstruktiven Schrumpfbehinderung einer Schweißnaht auf die SRR ist bislang völlig unbekannt. Hier setzt das Forschungsprojekt an, hinsichtlich der Gewinnung und Optimierung der Parameter für die PWHT unter realitätsnahen Bauteilsteif igkeiten (def inierte Einspannbedingung) mit dem Ziel der SRR-Vermeidung. Am Beispiel des niedriglegierten, hochwarmfesten Stahls 13CrMoV9-10 wurden UP- Schweißungen unter industriepraktischen Bedingungen freischrumpfend bzw. unter definierter Schrumpfbehinderung durchgeführt. Diese wurden mit unterschiedlichen PWHT-Szenarien (Variation der Auf heizrate und Endtemperatur) beaufschlagt. Die Ergebnisse des Projektes DVS 01.2261 / IGF 20171 N werden in diesem Beitrag vorgestellt, wie Aussagen zur SRR-Suszeptibilität in Abhängigkeit von Mikrostruktur und vorliegender mehrachsiger mechanischer Beanspruchung der Schweißnaht vor/während des PWHT. Für einen kritischen Zustand sind hohe Kräfte / Spannungen notwendig, die in freischrumpfenden Schweißversuchen u.U. nicht abbildbar sind. Die Berücksichtigung des mikrostrukturspezifischen Ausscheidungsverhaltens (in Schweißgut und Wärmeeinflusszone) unter realitätsnahen Einspannbedingungen ist für die Bewertung einer SRR-Suszeptibilität notwendig. Instrumentierte Schweißversuche unter definierter Schrumpfbehinderung ermöglichen hier das Monitoring der entstehenden Reaktionskräfte, -momente bzw. -spannungen. Ausgehend von diesem Referenzzustand erfolgte die Applikation der PWHT-Szenarien bzw. deren praktische Überprüfung. Zusätzlich wurde eine Ersatzprüfmethodik entwickelt, die die Betrachtung der mikrostrukturspezifischen SRR-Suszeptibilität unter Beibehaltung der äußeren Schrumpfbehinderung der Schweißnaht während des PWHT ermöglicht. Hierdurch wird die Bauteilübertragbarkeit ermöglicht und eine Transfergröße geschaffen, welche die Bauteilbewertung hinsichtlich der SRR-Neigung umfasst. T2 - DVS Congress 2022 CY - Koblenz, Germany DA - 19.09.2022 KW - UP-Schweißen KW - Spannungsrelaxationsriss KW - Forschungsprojekt KW - Dickblech KW - Wärmebehandlung PY - 2022 SN - 978-3-96144-190-7 SP - 76 EP - 82 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-55944 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Meyer, A. A1 - Halle, T. T1 - Einfluss von Stickstoff auf Mikrostruktur und Korrosionsverhalten martensitischer nichtrostender Stähle N2 - Die Korrosionsbeständigkeit martensitischer nichtrostender Stähle (MNS) wird wesentlich von der chemischen Zusammensetzung und dem Wärmebehandlungszustand beeinflusst. Beides bestimmt die Verteilung der Legierungselemente im Gefüge und die daraus resultierenden Werkstoffeigenschaften. Das Legieren mit Stickstoff bewirkt im Allgemeinen eine Verbesserung der Lochkorrosionsbeständigkeit von nichtrostenden Stählen. Bei martensitischen nichtrostenden Stählen ist dieser Effekt nicht nur auf den Stickstoffgehalt selbst zurückzuführen, sondern auch auf den gleichzeitig verringerten Kohlenstoffgehalt, der ebenfalls das Ergebnis der Wärmebehandlung beeinflusst. In dieser Arbeit wird der Einfluss von Stickstoff auf die Korrosionsbeständigkeit in Bezug zum Härtungsprozess von MNS dargestellt. Dazu wird vergleichend der Effekt von Austenitisierungsdauer, -temperatur und Abkühlgeschwindigkeit auf Gefüge, Härte und Korrosionsbeständigkeit der MNS X50CrMoV15 und X30CrMoN15 1 untersucht. Die Abkühlgeschwindigkeit wurde mit dem Stirnabschreckversuch gezielt variiert, um den Einfluss von Abkühlgeschwindigkeiten von > 100 K/s bis 1 K/s zu charakterisieren. Die Veränderungen der Korrosionsbeständigkeit werden durch die elektrochemisch potentiodynamische Reaktivierung (EPR) und durch die Bestimmung kritischer Lochkorrosionspotentiale dokumentiert. Neben diesem experimentellen Ansatz werden auch die Ergebnisse von thermodynamischen Berechnungen mit der Software Thermocalc vorgestellt und abschließend auch zur Interpretation des Einflusses von Stickstoff auf die Korrosionsbeständigkeit martensitischer nichtrostender Stähle genutzt. T2 - 18. Werkstofftechnisches Kolloquium der TU Chemnitz CY - Chemnitz, Germany DA - 10.03.2016 KW - Korrosionsbeständigkeit KW - Corrosion resistance KW - Wärmebehandlung KW - Heat treatment KW - Nichtrostende Stähle KW - Stainless steels KW - Thermocalc KW - Thermocalc PY - 2016 AN - OPUS4-37261 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Meyer, A. A1 - Halle, T. T1 - Einfluss von Stickstoff auf Mikrostruktur und Korrosionsverhalten martensitischer nichtrostender Stähle N2 - Die Korrosionsbeständigkeit martensitischer nichtrostender Stähle (MNS) wird wesentlich von der chemischen Zusammensetzung und dem Wärmebehandlungszustand beeinflusst. Beides bestimmt die Verteilung der Legierungselemente im Gefüge und die daraus resultierenden Werkstoffeigenschaften. Das Legieren mit Stickstoff bewirkt im Allgemeinen eine Verbesserung der Lochkorrosionsbeständigkeit von nichtrostenden Stählen. Bei martensitischen nichtrostenden Stählen ist dieser Effekt nicht nur auf den Stickstoffgehalt selbst zurückzuführen, sondern auch auf den gleichzeitig verringerten Kohlenstoffgehalt, der ebenfalls das Ergebnis der Wärmebehandlung beeinflusst. In dieser Arbeit wird der Einfluss von Stickstoff auf die Korrosionsbeständigkeit in Bezug zum Härtungsprozess von MNS dargestellt. Dazu wird vergleichend der Effekt von Austenitisierungsdauer, -temperatur und Abkühlgeschwindigkeit auf Gefüge, Härte und Korrosionsbeständigkeit der MNS X50CrMoV15 und X30CrMoN15 1 untersucht. Die Abkühlgeschwindigkeit wurde mit dem Stirnabschreckversuch gezielt variiert, um den Einfluss von Abkühlgeschwindigkeiten von > 100 K/s bis 1 K/s zu charakterisieren. Die Veränderungen der Korrosionsbeständigkeit werden durch die elektrochemisch potentiodynamische Reaktivierung (EPR) und durch die Bestimmung kritischer Lochkorrosionspotentiale dokumentiert. Neben diesem experimentellen Ansatz werden auch die Ergebnisse von thermodynamischen Berechnungen mit der Software Thermocalc vorgestellt und abschließend auch zur Interpretation des Einflusses von Stickstoff auf die Korrosionsbeständigkeit martensitischer nichtrostender Stähle genutzt. T2 - Forschungsseminar des MDZWP 2016 CY - Magdeburg, Germany DA - 31.03.2016 KW - Korrosionsbeständigkeit KW - Corrosion resistance KW - Wärmebehandlung KW - Heat treatment KW - Nichtrostende Stähle KW - Stainless steels KW - Thermocalc KW - Thermocalc PY - 2016 AN - OPUS4-37262 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Meyer, A. A1 - Halle, T. ED - Lampke, T. ED - Wagner, G. ED - Wagner, M.F.-X. T1 - Einfluss von Stickstoff auf Mikrostruktur und Korrosionsverhalten martensitischer nichtrostender Stähle T2 - Tagungsband zum 18. Werkstofftechnischen Kolloquium N2 - Die Korrosionsbeständigkeit martensitischer nichtrostender Stähle (MNS) wird wesentlich von der chemischen Zusammensetzung und dem Wärmebehandlungszustand beeinflusst. Beides bestimmt die Verteilung der Legierungselemente im Gefüge und die daraus resultierenden Werkstoffeigenschaften. Das Legieren mit Stickstoff bewirkt im Allgemeinen eine Verbesserung der Lochkorrosionsbeständigkeit von nichtrostenden Stählen. Bei martensitischen nichtrostenden Stählen ist dieser Effekt nicht nur auf den Stickstoffgehalt selbst zurückzuführen, sondern auch auf den gleichzeitig verringerten Kohlenstoffgehalt, der ebenfalls das Ergebnis der Wärmebehandlung beeinflusst. In dieser Arbeit wird der Einfluss von Stickstoff auf die Korrosionsbeständigkeit in Bezug zum Härtungsprozess von MNS dargestellt. Dazu wird vergleichend der Effekt von Austenitisierungsdauer, -temperatur und Abkühlgeschwindigkeit auf Gefüge, Härte und Korrosionsbeständigkeit der MNS X50CrMoV15 und X30CrMoN15 1 untersucht. Die Abkühlgeschwindigkeit wurde mit dem Stirnabschreckversuch gezielt variiert, um den Einfluss von Abkühlgeschwindigkeiten von > 100 K/s bis 1 K/s zu charakterisieren. Die Veränderungen der Korrosionsbeständigkeit werden durch die elektrochemisch potentiodynamische Reaktivierung (EPR) und durch die Bestimmung kritischer Lochkorrosionspotentiale dokumentiert. Neben diesem experimentellen Ansatz werden auch die Ergebnisse von thermodynamischen Berechnungen mit der Software Thermocalc vorgestellt und abschließend auch zur Interpretation des Einflusses von Stickstoff auf die Korrosionsbeständigkeit martensitischer nichtrostender Stähle genutzt. T2 - 18. Werkstofftechnisches Kolloquium der TU Chemnitz CY - Chemnitz, Germany DA - 10.03.2016 KW - Korrosionsbeständigkeit KW - Corrosion resistance KW - Wärmebehandlung KW - Heat treatment KW - Nichtrostende Stähle KW - Stainless steels KW - Thermocalc KW - Thermocalc PY - 2016 SN - 978-3-00-052212-3 SN - 1439-1597 VL - 59 SP - 325 EP - 336 PB - TU Chemnitz, Fakultät für Maschinenbau, Institut für Werkstoffwissenschaft und Werkstofftechnik CY - Chemnitz AN - OPUS4-37263 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Selleng, Christian A1 - Meng, Birgit A1 - Gröger, K. A1 - Fontana, Patrick T1 - Einflussgrößen auf die Wirksamkeit einer Wärmebehandlung von Ultrahochfestem Beton (UHFB) T1 - Influencing factors for the effectivity of heat treatment of ultrahigh performance concrete (UHPC) JF - Beton- und Stahlbau N2 - Mittels Wärmebehandlung lassen sich die hervorragenden Eigenschaften von UHFB nochmals verbessern. Die für eine optimale Umsetzung relevanten Randbedingungen werden aktuell in der Fachwelt diskutiert. In dieser Veröffentlichung werden die Ergebnisse eines Forschungsprojekts vorgestellt, das die Wirkung verschiedener Einflussgrößen bei der Wärmebehandlung auf die Eigenschaften von UHFB zum Thema hatte. Dabei wurden die Art des Schutzes gegen das Austrocknen, die Vorlagerungszeit und die Haltezeit variiert. Um die zugrunde liegenden Prozesse zu verstehen, wurde der Phasenbestand mittels Röntgendiffraktometrie untersucht. Die höchsten Druckfestigkeiten des UHFB ließen sich bei einer Wärmebehandlung mit Wasserlagerung erzielen, da hierbei eine weitere Hydratation begünstigt wird. Vergleichsweise niedriger waren die Steigerungen bei einer Behandlung mit Schutz vor Austrocknung, während eine ungeschützte Behandlung zu deutlich geringeren Festigkeiten führte. Die Vorlagerungszeit beträgt im Idealfall einige Tage, um die Ausbildung eines offenbar günstigen Ausgangsgefüges sicherzustellen. Die Haltezeit sollte möglichst ausgedehnt sein, weil die Hydratation entsprechend lange gefördert wird. Im oberflächennahen Bereich war unter bestimmten Bedingungen eine Zonierung zu beobachten, deren Ursachen und Folgen, insbesondere in Bezug auf die Dauerhaftigkeit, weitere Forschung erfordern. KW - Ultra-Hochleistungsbeton KW - Wärmebehandlung KW - Behandlungsparameter KW - Vorlagerungszeit KW - Haltezeit KW - Festigkeitssteigerung KW - Zonierung KW - Ettringit PY - 2017 DO - https://doi.org/10.1002/best.201600059 SN - 0005-9900 VL - 112 IS - 1 SP - 12 EP - 21 PB - Ernst & Sohn AN - OPUS4-39171 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Kauss, N. A1 - Halle, T. T1 - Einfluss der Wärmebehandlung auf Mikrostruktur und Korrosionsverhalten kohlenstoffhaltiger nichtrostender Stähle T2 - Tagungsband zum 20. Werkstofftechnischen Kolloquium N2 - Das Korrosionsverhalten von kohlenstoffhaltigen martensitischen nichtrostenden Stählen variiert in Abhängigkeit der Wärmebehandlung (WB) und der damit eingestellten Mikrostruktur deutlich stärker als bei kohlenstoffarmen ferritischen und austenitischen nichtrostenden Stählen. Bei erhöhtem Kohlenstoffgehalt bestimmt die diffusionsgesteuerte Bildung und Auflösung von Chromkarbiden die Verteilung von Chrom und Kohlenstoff im Gefüge. Bisher lag der Fokus von Forschungsarbeiten zum Einfluss der WB auf dem Anlassen im allgemein bekannten Sensibilisierungsbereich dieser Werkstoffgruppe zwischen 200 °C und 700 °C und der dort auftretenden Chromverarmung. Mit der gezielten WB des X46Cr13 (1.4034) wird gezeigt, dass Temperatur und Dauer beim Austenitisieren sowie die anschließende Abkühlung beim Härten das Korrosionsverhalten schon vor dem Anlassen signifikant beeinflussen. Auf der Basis von thermodynamischen Berechnungen wurden definierte WB ausgewählt, um gezielt unterschiedliche Volumengehalte von Chromkarbiden im Gefüge und somit auch unterschiedliche Chrom bzw. Kohlenstoffgehalte im Mischkristall zu erzeugen. Anschließend wurden die resultierenden Gefügezustände hinsichtlich Chromkarbidanteil und Härte verglichen und das Korrosionsverhalten mit der elektrochemisch potentiodynamischen Reaktivierung (EPR) sowie durch einen Schnelltest mit der KorroPad-Prüfung untersucht. Dabei konnte ein direkter Zusammenhang zwischen WB, Mikrostrukturänderungen und Korrosionsverhalten festgestellt werden. Mit steigender Austenitisierungstemperatur wird der Anteil an Chromkarbiden reduziert und der Kohlenstoff- und Chromgehalt der Matrix erhöht, bis eine vollständige Auflösung der Chromkarbide gegeben und die chemische Nennzusammensetzung der Legierung im Mischkristall erreicht ist. In der direkten Folge wird die Ausbildung der für nichtrostende Stähle charakteristischen Passivschicht erleichtert und das Lochkorrosionsverhalten verbessert. Die Abkühlrate hat neben den Austenitisierungsparametern ebenfalls einen großen Einfluss auf das Korrosionsverhalten. So führt eine langsame Abkühlung an Luft zu einer Chromverarmung im Gefüge, die eine deutlich erhöhte Lochkorrosionsanfälligkeit zur Folge hat. In Abhängigkeit der WB von kohlenstoffhaltigen nichtrostenden Stählen können Mikrostruktur, Härte und Korrosionsbeständigkeit in einem weiten Bereich variieren. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Nichtrostender Stahl KW - Wärmebehandlung KW - EPR KW - KorroPad KW - Korrosionsbeständigkeit KW - ThermoCalc KW - Sensibilisierung KW - Martensitischer nichtrostender Stahl KW - Passivschicht PY - 2018 SN - 978-3-00-058901-0 SN - 1439-1597 VL - 72 SP - 711 EP - 720 PB - Eigenverlag CY - Chemnitz AN - OPUS4-44559 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Kauss, N. T1 - KorroPad-Prüfung - Neue Anwendungen aus Industrie und Forschung N2 - Mit der KorroPad-Prüfung kann die Lochkorrosionsbeständigkeit nichtrostender Stähle auf sehr einfache, schnelle und kostengünstige Weise eingeschätzt werden. Das KorroPad ist damit für Hersteller, Verarbeiter und Anwender nichtrostender Stähle eine interessante Alternative zu zeitintensiven Langzeitversuchen und komplexen elektrochemischen Untersuchungsmethoden. Die prinzipiellen Funktionsweise der KorroPad-Prüfung wird im Vortrag beschrieben, um anschließend verschiedene Anwendungen aus Industrie und Forschung vorzustellen. Exemplarisch werden dazu die Bewertung von Schleif- und Passivierungsprozessen, die Qualitätskontrolle der Wärmebehandlung und Oberflächenbearbeitung von Schneidwaren vorgestellt. Mit der KorroPad-Prüfung lassen sich aber auch werkstoff- und gefügebedingte Einflüsse auf die Lochkorrosionsbeständigkeit gezielt untersuchen. Dies wird an Beispielen aus aktuellen Forschungsarbeiten dargestellt. T2 - Forschungsseminar des MDZWP e. V. CY - Magdeburg, Germany DA - 13.03.2018 KW - Korrosion KW - Nichtrostender Stahl KW - KorroPad KW - Wärmebehandlung KW - Korrosionsbeständigkeit KW - Lochkorrosion KW - Schneidwaren KW - Korrosionsprüfung PY - 2018 AN - OPUS4-44549 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Harnisch, K. A1 - Klee, K. T1 - Wärmebehandlung und Korrosionsbeständigkeit von CoCrMo-Legierungen N2 - Aufgrund guter mechanischer und chemischer Eigenschaften sowie einer hohen Biokompatibilität sind CoCrMo-Legierungen als Implantatwerkstoffe seit Jahrzehnten fester Bestandteil medizintechnischer Anwendungen. Diese Eigenschaften resultieren bekanntermaßen aus chemischer Zusammensetzung, atomarem Aufbau und dem Gefüge. Letzteres wird durch Legierungszusammensetzung, Herstellungsprozess und Wärmebehandlungen bestimmt. In der Vergangenheit wurden bereits Erkenntnisse zum Einfluss der Mikrostruktur auf mechanische bzw. chemische Eigenschaften von CoCrMo gewonnen. Ebenso wurde in der Literatur das Korrosionsverhalten von CoCrMo im Beisein von Körperflüssigkeiten betrachtet. Bisher fehlt es jedoch an vergleichenden Untersuchung, die das Korrosionsverhalten verschiedener Phasen- bzw. Gefügezustände in verschiedenen Körpermedien betrachten. In dieser Arbeit werden bei einer ausgewählten CoCrMo Legierung verschiedene Gefügezustände durch plastische Verformung und Wärmebehandlung erzeugt und vergleichend untersucht. Das Korrosionsverhalten wird anhand elektrochemischer Untersuchungen in verschiedenen körperflüssigkeitsnahen Lösungen im Vergleich zu Titan charakterisiert und der Einfluss von bestimmten Zusätzen (HCL und H2O2) ermittelt. T2 - 26. Treffen vom Forschungsnetzwerk Muskeloskelettale Biomechanik (MSB-NET) CY - Magdeburg, Germany DA - 07.06.2018 KW - Korrosion KW - Korrosionsbeständigkeit KW - Korrosionsprüfung KW - Wärmebehandlung KW - CoCrMo KW - Titan PY - 2018 AN - OPUS4-45247 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Rezension: Wärmebehandlung von Eisenwerkstoffen II - Nitrieren und Nitrocarburieren T2 - Materials an Corrosion N2 - Wie schon in den vorherigen Ausgaben bietet dieses Buch Studierenden der technischen Fach- und Hochschulen eine gute Unterstützung und ist insbesondere für die in der Industrie tätigen Techniker, Konstrukteure und Ingenieure zu empfehlen. Die aktualisierte Bibliographie von zum Thema einschlägigen Dissertationsschriften am Ende des Werkes bietet auch einen hohen Nutzen für den wissenschaftlichen Gebrauch. KW - Nitrocarburieren KW - Wärmebehandlung PY - 2018 DO - https://doi.org/10.1002maco.201870025 SN - 1521-4176 VL - 69 IS - 2 SP - 5 PB - WILEY-VCH Verlag GmbH & Co. KgaA CY - Weinheim AN - OPUS4-44924 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Hilgenberg, Kai T1 - Einfluss der Porosität auf die Duktilitätseigenschaften von additiv gefertigtem AlSi10Mg T2 - Additiv gefertigte Bauteile und Strukturen N2 - Die Werkstoffeigenschaften im selektiven Laserstrahlschmelz-Verfahren hergestellter Bauteile werden von einer Vielzahl technologischer Parameter beeinflusst, sodass sich die Fertigungsgüte verschiedener Anlagen voneinander unterscheiden kann. Vor diesem Hintergrund wurde in der vorliegenden Arbeit untersucht, inwiefern sich durch verschiedene nachgelagerte Wärmebehandlungen die Mikrostruktur und die quasistatischen Festigkeitseigenschaften von Proben aus der Aluminiumlegierung AlSi10Mg, die mit verschiedenen Anlagen, Pulvern, Belichtungsstrategien und Prozessparametern gefertigt wurden, harmonisieren lassen. Die Versuche zeigten u.a., dass die erheblichen Festigkeitsunterschiede im Ausgangszustand unabhängig von der angewendeten Wärmebehandlungsroute aufgehoben wurden. Dennoch wurden signifikante Unterschiede in der Duktilität ermittelt. Anhand umfangreicher Bruchflächenanalysen konnte nachgewiesen werden, dass die in der Bruchfläche ermittelte Porosität eine lineare Korrelation zu der Bruchdehnung aufwies. T2 - 5. Tagung des Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online Meeting DA - 04.11.2020 KW - Wärmebehandlung KW - Additive Fertigung KW - Laser powder bed fusion KW - AlSi10Mg KW - Ringversuch PY - 2020 SN - 2509-8772 VL - 405 SP - 93 EP - 104 AN - OPUS4-51657 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -