TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Rabe, Torsten T1 - Optimized spray granules for dry pressing by means of slurry destabilization and ultrasonic atomization N2 - The homogeneous introduction of organic additives is a prerequisite for good processability of ceramic powders during dry pressing. The addition of organic additives by wet route via ceramic slurries offers advantages over dry processing. The organic content can be reduced and a more homogeneous distribution of the additives on the particle surface is achieved. In addition to the measurements of zeta potential and viscosity, sedimentation analysis by optical centrifugation was also tested and successfully used to characterize the ceramic slurries and accurately evaluate of the suitability of different types, amounts, and compositions of organic additives. Spray drying of well-stabilized slurries usually results in mostly hollow granules with a hard shell leading to sintered bodies with defects and reduced strength and density. By purposefully degrading the slurry stability after dispersion of the ceramic powder, the drying behavior of the granules in the spray drying process and thus the granule properties can be influenced. Destabilization of the slurry and thus partial flocculation was quantified by optical centrifugation. Spray drying of the destabilized alumina slurries resulted in "non-hollow" granules without the detrimental hard shell and thus improved granule properties. Further improvement of the granules was achieved by installing ultrasonic atomization in the spray dryer. A narrower granule size distribution was achieved, which had a positive effect on, among other things, the flowability of the granules. Specimens produced from this granules had fewer defects of smaller size, leading to better results for the density and strength of the sintered bodies. The observations made for alumina could be transferred to zirconia and as well to ZTA with 20 wt% zirconia. T2 - Ceramics in Europe 2022 CY - Krakau, Poland DA - 10.07.2022 KW - Ultrasound KW - Spray drying KW - Slurry PY - 2022 AN - OPUS4-56171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Oesch, T. A1 - Mielentz, Frank A1 - Meinel, Dietmar A1 - Spyridis, P. T1 - Non-Destructive Multi-Method Assessment of Steel Fiber Orientation in Concrete N2 - Integration of fiber reinforcement in high-performance cementitious materials has become widely applied in many fields of construction. One of the most investigated advantages of steel Fiber reinforced concrete (SFRC) is the deceleration of crack growth and hence its improved sustainability. Additional benefits are associated with its structural properties, as fibers can significantly increase the ductility and the tensile strength of concrete. In some applications it is even possible to entirely replace the conventional reinforcement, leading to significant logistical and environmental benefits. Fiber reinforcement can, however, have critical disadvantages and even hinder the Performance of concrete, since it can induce an anisotropic material behavior of the mixture if the fibers are not appropriately oriented. For a safe use of SFRC in the future, reliable non-destructive testing (NDT) methods need to be identified to assess the fibers’ orientation in hardened concrete. In this study, ultrasonic material testing, electrical impedance testing, and X-ray computed tomography have been investigated for this purpose using specially produced samples with biased or random Fiber orientations. We demonstrate the capabilities of each of these NDT techniques for fiber orientation measurements and draw conclusions based on these results about the most promising areas for future research and development. KW - Spectral induced polarization KW - Steel fiber reiniforced concrete KW - Fiber orientation KW - Non-destructive testing KW - Micro-computed tomography KW - Ultrasound PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543520 VL - 12 IS - 2 SP - 1 EP - 14 PB - MDPI CY - Basel Switzerland AN - OPUS4-54352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krome, Fabian A1 - Gravenkamp, Hauke ED - Every, A. T1 - Analyzing modal behavior of guided waves using high order eigenvalue derivatives N2 - This paper presents a mode-tracing approach for elastic guided waves based on analytically computed derivatives and includes a study of interesting phenomena in the dispersion curve representation. Numerical simulation is done by means of the Scaled Boundary Finite Element Method (SBFEM). Two approaches are used to identify the characteristics of the resulting wave modes: Taylor approximation and Padé approximation. Higher order differentials of the underlying eigenvalue problem are the basis for these approaches. Remarkable phenomena in potentially critical frequency regions are identified and the tracing approach is adapted to these regions. Additionally, a stabilization of the solution process is suggested. KW - Guided waves KW - Mode-tracing KW - Eigenvalue problem derivatives KW - Ultrasound KW - Scaled Boundary Finite Element Method PY - 2016 U6 - https://doi.org/10.1016/j.ultras.2016.05.014 SN - 0041-624X VL - 2016 IS - 71 SP - 75 EP - 85 PB - Elsevier B.V. AN - OPUS4-38076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, David A1 - Meyendorf, N. A1 - Hakim, I. A1 - Ewert, Uwe ED - Chimenti, D. E. ED - Bond, L. J. T1 - Defect recognition in CFRP components using various NDT methods within a smart manufacturing process N2 - The manufacturing process of carbon fiber reinforced polymer (CFRP) components is gaining a more and more significant role when looking at the increasing amount of CFRPs used in industries today. The monitoring of the manufacturing process and hence the reliability of the manufactured products, is one of the major challenges we need to face in the near future. Common defects which arise during manufacturing process are e.g. porosity and voids which may lead to delaminations during operation and under load. To find irregularities and classify them as possible defects in an early stage of the manufacturing process is of high importance for the safety and reliability of the finished products, as well as of significant impact from an economical point of view. In this study we compare various NDT methods which were applied to similar CFRP laminate samples in order to detect and characterize regions of defective volume. Besides ultrasound, thermography and eddy current, different X-ray methods like radiography, laminography and computed tomography are used to investigate the samples. These methods are compared with the intention to evaluate their capability to reliably detect and characterize defective volume. Beyond the detection and evaluation of defects, we also investigate possibilities to combine various NDT methods within a smart manufacturing process in which the decision which method shall be applied is inherent within the process. Is it possible to design an in-line or at-line testing process which can recognize defects reliably and reduce testing time and costs? This study aims to show up opportunities of designing a smart NDT process synchronized to the production based on the concepts of smart production (Industry 4.0). A set of defective CFRP laminate samples and different NDT methods were used to demonstrate how effective defects are recognized and how communication between interconnected NDT sensors and the manufacturing process could be organized. T2 - 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION CY - Provo, Utah, USA DA - 16.07.2017 KW - Carbon fiber reinforced polymers KW - Non-destructive testing KW - Smart industry (4.0) KW - Ultrasound KW - Laminography KW - Serial sectioning KW - Computed tompgraphy PY - 2018 SN - 978-0-7354-1644-4 U6 - https://doi.org/10.1063/1.5031521 SN - 0094-243X VL - 1949 SP - UNSP 020024, 1 EP - 11 PB - AIP Publishing AN - OPUS4-44773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Güther, Wolfgang A1 - Rabe, Torsten T1 - Strategies to improve spray dried multi-component granules N2 - Dry pressing of ceramic materials requires homogeneously soft granules with good flowability to allow rapid die filling and to avoid packing defects. Spray-drying granulation appears to be the best method for obtaining granules with high flowability in industrial scale. But, strength reducing internal microstructural defects caused by spray-dried granules with hollow and hard shells are often observed using nano and/or multi-component starting powders. Using the example of a ZTA composite, the potential of slurry optimization, ultrasound atomization and infrared drying for better granule properties and compaction behavior were investigated. Starting granules produced in a conventional spray dryer (Niro, Denmark) with a two fluid nozzle showed typical defects like large central pores and dimples. The early step of slurry preparation already possesses an essential optimization possibility in the form of stability adjustments. Granule compaction was clearly improved upon a specific reduction in slurry stability. The second optimization opportunity to improve the granule quality was the atomization step. Implementation of an ultrasound atomizing unit into the conventional spray dryer positively affected granule size distribution and therefor flowability and as well granule yield. But, a combination of both process optimizations delivered the best sinter bodies with highest density and strength due to further reduction in maximum size and fraction of pores. As last step of a spray drying process, the drying is the focus of further investigations. A current setup implying a spray dryer prototype utilizes stacked infrared heater in a countercurrent setup delivering a further increase in granule yield and enduring spraying process stability. T2 - 93. Jahrestagung der Deutschen Keramischen Gesellschaft CY - München, Germany DA - 10.04.2018 KW - Spray drying KW - Granules KW - Destabilization KW - Ultrasound PY - 2018 AN - OPUS4-44700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hakim, I. A1 - Schumacher, David A1 - Sundar, V. A1 - Donaldson, S. A1 - Creuz, A. A1 - Schneider, R. A1 - Keller, J. A1 - Browning, C. A1 - May, D. A1 - Abo Ras, M. A1 - Meyendorf, N. ED - Chimenti, D. E. ED - Bond, L. J. T1 - Volume imaging NDE and serial sectioning of carbon fiber composites N2 - A composite material is a combination of two or more materials with very different mechanical, thermal and electrical properties. The various forms of composite materials, due to their high material properties, are widely used as structural materials in the aviation, space, marine, automobile, and sports industries. However, some defects like voids, delamination, or inhomogeneous fiber distribution that form during the fabricating processes of composites can seriously affect the mechanical properties of the composite material. In this study, several imaging NDE techniques such as: thermography, high frequency eddy current, ultrasonic, x-ray radiography, x-ray laminography, and high resolution x-ray CT were conducted to characterize the microstructure of carbon fiber composites. Then, a 3D analysis was implemented by the destructive technique of serial sectioning for the same sample tested by the NDE methods. To better analyze the results of this work and extract a clear volume image for all features and defects contained in the composite material, an intensive comparison was conducted among hundreds of 3D-NDE and multi serial sections’ scan images showing the microstructure variation. T2 - 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION CY - Provo, Utah, USA DA - 16.07.2017 KW - Carbon fiber reinforced polymers KW - Non-destructive testing KW - Thermography KW - Eddy current KW - Ultrasound KW - X-ray radiography KW - X-ray laminography KW - X-ray computed tomography KW - Serial sectioning PY - 2018 U6 - https://doi.org/10.1063/1.5031590 VL - 1949 SP - 120003-1 EP - 120003-10 PB - AIP Publishing AN - OPUS4-45173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Rabe, Torsten T1 - Superior granule properties by spray drying controlled destabilized slurries with ultrasound N2 - Homogeneous introduction of organic additives is a key of ceramic powder processing. Addition of organics to ceramic slurries holds advantages compared to dry processing like organic content reduction and a more homogeneous additive distribution on the particle surface. Investigations of the alumina slurries were primarily based on zeta potential measurements and sedimentation analysis by optical centrifugation. Both methods were combined to determine a suitable additive type, amount and composition, whereas the spray drying suitability has been ensured by viscosity measurements. Granules, yielded by spray drying of such ideally dispersed alumina slurries, are mostly hollow and possess a hard shell. Those granules cannot easily be processed and can only hardly be destroyed in the following shaping step, leading to sinter bodies with many defects and poor strength and density. The precise slurry destabilization, carried out after ideally dispersing the ceramic powder, shows a strong influence on the drying behavior of the granules and hence on the granule properties. A promising degree of destabilization and partial flocculation was quantified by optical centrifugation and resulted in improved granule properties. Spray drying the destabilized alumina slurries yielded homogeneous “non-hollow” granules without the above mentioned hard shell. Sample bodies produced of these granules exhibited a reduction of defect size and number, leading to better results for sinter body density and strength. The positive effect of the slurry destabilization has been further improved, by exchanging the atomizing unit from a two-fluid one to an ultrasound atomizer with only minor slurry adjustments necessary. The controlled destabilization and ultrasound atomization of the ceramic slurry show excellent transferability for zirconia and even ZTA (zirconia toughened alumina) composite materials. T2 - Partec 2019 CY - Nuremberg, Germany DA - 09.04.2019 KW - Destabilization KW - Slurry KW - Ultrasound KW - Atomization PY - 2019 AN - OPUS4-48291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Advancing spray granulation by ultrasound atomization N2 - The influence of the atomization technique on the suitability of granules for dry pressing is the focus of the presented investigations. Therefore, destabilized alumina, zirconia, and zirconia toughened alumina (ZTA) slurries were spray dried and the obtained granules were used to fabricate green and finally sintered bodies for evaluation. Granules made in a laboratory spray dryer with a two-fluid nozzle served as a reference. An ultrasonic atomizer was integrated into the same spray dryer and the influence on the granule properties was evaluated. Untapped bulk density, granule size distribution, and flowability are among the evaluated granule-related properties as well as the granule yield which is used as an indicator of the process efficiency. Yield and flowability as most important granule properties are clearly improved when atomization is realized with ultrasound. The investigated sinter body properties include porosity, sinter body density, and biaxial strength and are as well positively affected by switching the atomization technique to ultrasound. Therefore, the Approach to improve the compressibility of granules by ultrasonic atomization, which leads to an improved microstructure, density, and strength of sintered bodies, has proven to be successful for single-component ceramics (alumina and zirconia) as well as for the multicomponent ceramic ZTA. KW - Alumina KW - Granules KW - Spray drying KW - Ultrasound KW - Zirconia KW - Zirconia-toughened alumina PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510696 VL - 17 IS - 5 SP - 2212 EP - 2219 AN - OPUS4-51069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Güther, Wolfgang A1 - Rabe, Torsten T1 - Advanced spray drying process by controlled slurry destabilization and ultrasonic atomization N2 - Spray drying of ceramic slurries aims for soft and free-flowing granules with homogenous microstructure suitable for uniaxial and isostatic pressing. A stable and continuous spray drying process of slurries with maximized solids content is a further development target, since a reduction of the energy intensive drying procedure is desirable. First part of the investigation focuses on the development of an appropriate zirconia slurry for spray drying with optimized organic additive contents (dispersant + binder + pressing and lubricating agents). Characterization and improvement of slurries are based on zeta potential measurements and investigations of the sedimentation behavior in an optical centrifuge. Therefor the slurries were spray dried with a conventional spray dryer with a two stream nozzle run in fountain mode. The controlled destabilization of the slurries was introduced, since the unwanted formation of hard granules with donut-like shape could be circumvented. Spray drying of such modified slurries resulted in soft granules without voids and finally leaded to sintered bodies with improved microstructure, density and bending strength. Expectedly, the destabilization process causes a significant increase in viscosity of the ceramic slurry. Hence, an alternative spraying concept utilizing an ultrasonic nozzle was tested. Indeed, the ultrasonic nozzle seems able to atomize slurries with viscosities beyond the capability of the regular two stream nozzles due to the slurry’s shear thinning behavior. In second part of the investigation the integration of the ultrasonic nozzle in a commercial spray dryer is shown and first results of the spraying tests are discussed. Continuous spraying processes of highly viscous alumina, zirconia and ZTA slurries were realized over an extended production period. T2 - 92. Jahrestagung der deutschen keramischen Gesellschaft CY - Berlin, Germany DA - 20.03.2017 KW - Ceramics KW - Slurry KW - Granulation KW - Spray drying KW - Ultrasound KW - Destabilization PY - 2017 AN - OPUS4-39587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hakim, I. A1 - Laquai, René A1 - Schumacher, David A1 - Müller, Bernd R. A1 - Graja, P. A1 - Meyendorf, N. A1 - Donaldson, S. T1 - The Effect of Manufacturing Conditions on Discontinuity Population and Fatigue Fracture Behavior in Carbon/Epoxy Composites N2 - Carbon fiber composites have been increasingly used in aerospace, military, sports, automotive and other fields due to their excellent properties, including high specific strength, high specific modulus, corrosion resistance, fatigue resistance, and low thermal expansion coefficient. Interlaminar fracture is a serious failure mode leading to a loss in composite stiffness and strength. Iscontinuities formed during manufacturing process degrade the fatigue life and interlaminar fracture resistance of the composite. In his study, three approaches were implemented and their results were correlated to quantify discontinuities effecting static and fatigue interlaminar fracture behavior of carbon fiber composites. Samples were fabricated by hand layup vacuum bagging manufacturing process under three different vacuum levels, indicated High (-686 mmHg), Moderate (-330 mmHg) and Poor (0 mmHg). Discontinuity content was quantified throughthickness by destructive and nondestructive techniques. Eight different NDE methods were conducted including imaging NDE methods: X-Ray laminography, ultrasonic, high frequency eddy current, pulse thermography, pulse phase thermography and lock-in-thermography, and averaging NDE techniques: X-Ray refraction and thermal conductivity measurements. Samples were subsequently destructively serial sectioned through-thickness into several layers. Both static and fatigue interlaminar fracture behavior under Mode I were conducted. The results of several imaging NDE methods revealed the trend in percentages of discontinuity. However, the results of averaging NDE methods showed a clear correlation since they gave specific values of discontinuity through-thickness. Serial sectioning exposed the composite’s internal structure and provided a very clear idea about the type, shape, size, distribution and location of most discontinuities included. The results of mechanical testing showed that discontinuities lead to a decrease in Mode I static interlaminar fracture toughness and a decrease in Mode I cyclic strain energy release rates fatigue life. Finally, all approaches were correlated: the resulted NDE percentages and parameters were correlated with the features revealed by the destructive test of serial sectioning and static and fatigue values in order to quantify discontinuities such as delamination and voids. T2 - QNDE 2016 CY - Atlanta, GA, USA DA - 17.07.2016 KW - Carbon Fber Reinforced Polymers KW - Nondestructive Testing KW - X-ray Imaging KW - Ultrasound KW - Thermography PY - 2017 SN - 978-0-7354-1474-7 U6 - https://doi.org/10.1063/1.4974661 SN - 0094-243X N1 - Geburtsname von Schumacher, David: Walter, D. - Birth name of Schumacher, David: Walter, D. VL - 1806 SP - UNSP 090017, 1 EP - 11 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-39716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -