TY - CONF A1 - Delgado Arroyo, Diego A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Influence of machining parameters on the surface of high entropy alloys N2 - High entropy alloys are a new class of materials. In order to transfer their use to real components, their machinability must be investigated. For this purpose, preliminary investigations were carried out on samples from the TU Chemnitz in order to apply for a joint project based on these investigations. T2 - Kooperationsmeeting TU-Chemnitz CY - Online meeting DA - 01.06.2021 KW - High Entropy Alloy KW - Ultrasonic assisted machining PY - 2021 AN - OPUS4-53324 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Delgado, D. A1 - Börner, Andreas A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Ultrasonic assisted milling of a CoCrFeNi medium entropy alloy N2 - Medium and High Entropy Alloys (MEA/HEA) are recently developed material classes, providing manifold applications, e.g., due to extraordinary structural properties. In that connection, the machinability as important issue for the processing of these materials was not in the scientific focus. This study focusses on experimental analysis of milling process conditions including ultrasonic assisted milling (USAM) and their effects on the resulting surface integrity of equiatomic CoCrFeNi-MEA specimens. For that reason, milling parameters (cutting speed, feed per cutting edge) were systematically varied for both conventional milling and USAM. The surface integrity was analyzed in terms of topography, defects, and residual stresses. Especially USAM leads to a decrease of occurring cutting forces and, hence, to an improvement of the surface integrity. Beneficial effects were observed in terms of lower tensile residual stresses at high cutting speed and feed per cutting edge. T2 - 6th CIRP Conference on Surface Integrity 2022, Lyon, 06 CY - Lyon, France DA - 08.06.2022 KW - Medium entropy alloy KW - Ultrasonic assisted machining PY - 2022 AN - OPUS4-55443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -