TY - JOUR A1 - Khrapov, D. A1 - Paveleva, A. A1 - Kozadayeva, M. A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Surmenev, R. A1 - Koptyug, A. A1 - Surmeneva, M. T1 - Trapped powder removal from sheet-based porous structures based on triply periodic minimal surfaces fabricated by electron beam powder bed fusion JF - Materials Science & Engineering A N2 - Electron Beam Powder Bed Fusion-manufactured (E-PBF) porous components with narrow pores or channels and rough walls or struts can be filled with trapped powder after the manufacturing process. Adequate powder removal procedures are required, especially for high-density porous structures. In the present research, sheetbased porous structures with different thicknesses based on triply periodic minimal surfaces fabricated by EPBF were subjected to different post-processing methods, including a traditional powder recovery system for EPBF, chemical etching and ultrasound vibration-assisted powder removal. Wall thickness, internal defects, microstructure and morphology features, powder distribution inside the specimens, mechanical properties and deformation modes were investigated. A powder recovery system could not remove all residual powder from dense structures. In turn, chemical etching was effective for surface morphology changes and subsurface layers elimination but not for powder removal, as it affected the wall thickness, considerably influencing the mechanical properties of the whole structure. The ultrasound vibration method was quite effective for the removal of residual powder from sheet-based TMPS structures and without a severe degradation of mechanical properties. 10.1016/j.msea.2022.144479 Ultrasound vibration also caused grain refinement. KW - Additive manufacturing KW - Residual powder removal KW - Ti6Al4V alloy KW - Electron beam powder bed fusion KW - TPMS structures PY - 2023 DO - https://doi.org/10.1016/j.msea.2022.144479 VL - 862 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-56564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Knigge, Xenia A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Voss, Heike A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Chemical and topographical changes upon sub-100-nm LIPSS formation on titanium alloy N2 - Laser-induced periodic surface structures (LIPSS) have gained remarkable attention as they represent a universal phenomenon that is often accompanying laser-processing. Such LIPSS enable a large variety of different surface functionalizations for applications in the fields of optics, fluidics, tribology, or medicine. Moreover, so-called “high spatial frequency LIPSS” (HSFL) provide an appealing and straightforward way for surface nanostructuring featuring spatial periods even below 100 nm – far beyond the optical diffraction limit. However, the imposed surface functionalities are usually caused by both, topographic and chemical surface alterations. For exploring these effects in detail, multi-method characterizations were performed here for HSFL on processed Ti- 6Al- 4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 1 – 400 kHz pulse repetition rate) under different laser and scan processing conditions. The sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), stylus profilometry (SP), and white light interference microscopy (WLIM), as well as near-surface chemical analyses by X-ray photoelectron spectroscopy (XPS), hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results allow to qualify the laser ablation depth, the geometrical HSFL characteristics and provide detailed insights into the depth extent and the nature of the ps-laser-induced near-surface oxidation. Significance for medical applications will be outlined. T2 - E-MRS Spring Meeting 2023 CY - Strasbourg, France DA - 29.05.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-offlight secondary ion mass spectrometry (ToF-SIMS) KW - Ti6Al4V alloy PY - 2023 AN - OPUS4-58531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Voss, Heike A1 - Knigge, Xenia A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Hertwig, Andreas A1 - Wasmuth, Karsten A1 - Sahre, Mario A1 - Weise, Matthias A1 - Mezera, Marek A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Chemical analyses of ps-laser generated LIPSS and Spikes on titanium alloy by HAXPES, XPS, and depth-profiling TOF-SIMS N2 - Laser-induced periodic surface structures (LIPSS) and their combination with self-ordered microstructures forming hierarchical Spikes enable a large variety of different surface functionalizations for applications in the fields of optics, fluidics, tribology, or medicine. Moreover, high spatial frequency LIPSS (HSFL) provide an appealing and straightforward way for surface nanostructuring featuring spatial periods even below 100 nm – far beyond the optical diffraction limit. However, the imposed surface functionalities are usually caused by both, topographic and chemical surface alterations. For exploring these effects in detail, multi-method characterizations were performed here for HSFL and hierarchical Spikes processed on Ti-6Al-4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 1 – 400 kHz pulse repetition rate) under different laser and scan processing conditions. The following sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), stylus profilometry (SP), and white light interference microscopy (WLIM), as well as near-surface chemical analyses by X-ray photoelectron spectroscopy (XPS), hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results allow to qualify the laser ablation depth, the geometrical HSFL/Spikes characteristics and provide detailed insights into the depth extent and the nature of the ps-laser-induced near-surface oxidation arising from the laser-processing in ambient air and into the relevance of heat-accumulation effects at high pulse repetition rates. Moreover, the direct comparison of the HAXPES and XPS data reveals the role of surface-covering organic contaminants adsorbed from the ambient atmosphere without the uncertainties and potential sputter reduction potentially caused by ion-sputter depth profiling. T2 - 11th International LIPSS Workshop CY - Madrid, Spain DA - 27.09.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrafast laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) KW - Ti6Al4V alloy PY - 2023 AN - OPUS4-58532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -