TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 SP - 1 EP - 7 PB - European society for composite materials AN - OPUS4-45338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 AN - OPUS4-45346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kraus, David T1 - Ermüdungsverhalten von Glasfaser-Kunststoff-Verbunden unter thermomechanischer Beanspruchung N2 - Die Werkstoffgruppe der Faser-Kunststoff-Verbunde (FKV) hat sich aufgrund ihrer hervorragenden Leichtbaueigenschaften unter anderem im Sportgerätebau, in der Luft- und Raumfahrt und in der Windenergieindustrie etabliert. Die so hergestellten Strukturen sind in der Regel nicht nur mechanischen Belastungen, sondern auch thermischen Lasten in einem breiten Temperaturspektrum ausgesetzt. Dennoch ist die Auswirkung des Temperatureinflusses bei einer Kombination von thermischer und mechanischer Last auf die Lebensdauer von Strukturen aus FKV bisher nur wenig untersucht. Im Rahmen dieser Arbeit wird der Einfluss von Temperaturen zwischen 213 K und 343 K auf einen Glasfaser-Epoxidharz-Verbund experimentell untersucht. Das Material wird in diesem Temperaturbereich eingehend charakterisiert: Es werden sowohl die thermomechanischen Eigenschaften von Faser- und Matrixwerkstoff als auch die des Verbundes ermittelt. In einem weiteren Schritt wird dann der Einfluss der Temperatur auf die Schädigungsentwicklung im quasi-statischen Lastfall sowie unter schwingender Ermüdungsbeanspruchung bei verschiedenen FKV-Mehrschichtverbunden analysiert. Basierend auf den experimentellen Daten wird ein Zusammenhang zwischen der Schädigung und der Anstrengung der Matrix innerhalb der Einzelschicht demonstriert. Die Matrixanstrengung wird mithilfe eines mikromechanischen Modells unter Berücksichtigung der thermomechanischen Eigenspannungen analytisch berechnet. Bei Querzugbeanspruchung kann gezeigt werden, dass eine Vorhersage der Schädigung in Abhängigkeit der Volumenänderungsenergie innerhalb der Matrix getroffen werden kann. Mithilfe des Konzepts der Matrixanstrengung ist eine Vorhersage der Lebensdauer des Werkstoffs unter schwingender Ermüdungsbeanspruchung in Abhängigkeit der Einsatztemperatur möglich. N2 - Due to their superior lightweight properties, fiber reinforced polymer (FRP) materials are well established in various fields, such as sports equipment, aerospace or wind energy structures. These structures are not only subjected to mechanical loads, but also to a broad spectrum of thermal environments. However, the impact of temperature on the fatigue life of thermomechanically loaded FRP structures is barely investigated to-date. In the scope of this work, the influence of temperatures in a range of 213 K to 343 K on a glass fiber reinforced epoxy polymer is experimentally examined. An extensive thermo-mechanical characterization of the static properties of the material is performed. The neat resin and Fiber material are investigated, as well as the composite. In addition, the impact of thermal loads on the damage evolution under quasi-static as well as cyclic fatigue loading is investigated for different multi-angle laminates. Based on the experimental data, a correlation is shown between damage and matrix effort of the unidirectional layer. The matrix effort is calculated according to a micromechanical model considering thermal residual stresses. Particularly under transverse loading, the damage Evolution can be predicted as a function of the dilatational strain energy of the matrix. Using the concept of the matrix effort presented in this work, a prediction of the fatigue life of the investigated material at different ambient temperature conditions can be performed. T3 - BAM Dissertationsreihe - 169 KW - Ermüdung KW - Faser-Kunststoff-Verbund KW - GFK KW - Schädigung KW - Thermomechanik KW - Fatigue KW - Composite KW - Glas fibre reinforced polymer KW - Damage KW - Thermomechanics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530253 SN - 1613-4249 VL - 169 SP - 1 EP - 164 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-53025 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Impact of thermal loads on the damage onset of fiber reinforced plastics N2 - In this study, quasi-static material tests on unidirectional and multi-angle glass fiber reinforced epoxy laminates at ambient temperatures from -213 K to 353 K (-60 °C to +80 °C) are performed. In addition, neat resin is investigated under tension and compression loads at different temperatures. The coefficient of thermal expansion is determined for neat resin and unidirectional reinforced specimens. The dependence of the resin’s thermomechanical properties on the ambient temperature is shown. The point of damage onset at which first cracks appear within the matrix under quasi-static loading is investigated by means of optical grey scale analysis. The correlation between damage onset and effective matrix stress at different ambient temperatures is identified. An approach for the calculation of thermomechanical loads and the prediction of the damage onset by means of inverse calculations is presented. The impact of the strain blocking effect of the matrix is considered as well as residual thermal stresses due to curing and resin shrinkage. T2 - ICCM21 - 21th International conference on composite materials CY - Xi'an, China DA - 20.08.2017 KW - Fatigue KW - Composite KW - Thermomechanics KW - Fiber reinforced plastics KW - Damage onset PY - 2017 SP - 1 EP - 12 AN - OPUS4-42075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Impact of thermal loads on the damage onset of fiber reinforced plastics N2 - In this study, quasi-static material tests on unidirectional and multi-angle glass fiber reinforced epoxy laminates at ambient temperatures from -213 K to 353 K (-60 °C to +80 °C) are performed. In addition, neat resin is investigated under tension and compression loads at different temperatures. The coefficient of thermal expansion is determined for neat resin and unidirectional reinforced specimens. The dependence of the resin’s thermomechanical properties on the ambient temperature is shown. The point of damage onset at which first cracks appear within the matrix under quasi-static loading is investigated by means of optical grey scale analysis. The correlation between damage onset and effective matrix stress at different ambient temperatures is identified. An approach for the calculation of thermomechanical loads and the prediction of the damage onset by means of inverse calculations is presented. The impact of the strain blocking effect of the matrix is considered as well as residual thermal stresses due to curing and resin shrinkage. T2 - International Conference of Composite Materials 21, ICCM21 CY - Xi'an, China DA - 20.08.2017 KW - Fatigue KW - Composite KW - Thermomechanics KW - Fiber reinforced plastics PY - 2017 AN - OPUS4-42074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kraus, David A1 - Kübler, Stefan A1 - Eisermann, René T1 - Multiaxial fatigue damage of glass fiber reinforced polymers N2 - Fiber reinforced polymers (FRPs) are a well established material in lightweight applications, e.g. in automotive, aerospace or wind energy. The FRP components are subjected to multiaxial mechanical as well as hygrothermal loads. Common operation temperatures are in the range of 213 K and 373 K (-60 °C and 100 °C) at a relative humidity of 10% to 90%. In spacecraft applications, the environmental conditions are even more extreme. However, the correlation between multiaxial mechanical loading and harsh environment conditions have to-date not been investigated in detail. The project aims to investigate the fatigue behavior of FRPs dependent on multiaxial mechanical loading, temperature, and humidity. Extensive experimental testing is performed on flat plate and cylindrical tube specimens, accompanied by numerical and analytical calculations. T2 - 24. Nationales SAMPE Symposium CY - Dresden, Germany DA - 06.02.2019 KW - Composite KW - Fatigue KW - Thermomechanics KW - Distributed fiber optic sensors PY - 2019 AN - OPUS4-47335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -