TY - CONF A1 - Derrien, Thibault J.-Y. A1 - Krüger, Jörg A1 - Bulgakova, N. M. A1 - Bonse, Jörn T1 - Multi-wavelength, multi-material prediction tools for the LIPSS community N2 - This talk presents multi-wavelength, multi-material prediction tools serving as useful models for researchers working in the field of laser-induced periodic surface structures (LIPSS). These models explain the role of surface plasmon polaritons (SPPs) in the formation of LIPSS. They particularly consider the cases of (i) “lossy” materials (where the imaginary part of the dielectric permittivity should not be neglected) and (ii) the excitation of SPPs in a thin film configuration (where two film interfaces become plasmonically active and couple to each other). T2 - 6th International LIPSS Workshop CY - Heraklion (Crete), Greece DA - 24.11.2016 KW - Surface plasmon polaritons KW - Laser-induced periodic surface structures (LIPSS) KW - Lossy materials KW - Thin films PY - 2016 AN - OPUS4-38512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Gräf, S. T1 - Maxwell Meets Marangoni — A Review of Theories on Laser‐Induced Periodic Surface Structures JF - Laser & Photonics Reviews N2 - Surface nanostructuring enables the manipulation of many essential surface properties. With the recent rapid advancements in laser technology, a contactless large‐area processing at rates of up to m2 s−1 becomes feasible that allows new industrial applications in medicine, optics, tribology, biology, etc. On the other hand, the last two decades enable extremely successful and intense research in the field of so‐called laser‐induced periodic surface structures (LIPSS, ripples). Different types of these structures featuring periods of hundreds of nanometers only—far beyond the optical diffraction limit—up to several micrometers are easily manufactured in a single‐step process and can be widely controlled by a proper choice of the laser processing conditions. From a theoretical point of view, however, a vivid and very controversial debate emerges, whether LIPSS originate from electromagnetic effects or are caused by matter reorganization. This article aims to close a gap in the available literature on LIPSS by reviewing the currently existent theories of LIPSS along with their numerical implementations and by providing a comparison and critical assessment of these approaches. KW - Laser-induced periodic surface structures (LIPSS) KW - Electromagnetic theories KW - Matter reorganization theories KW - Surface plasmon polaritons KW - Self-organization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514089 DO - https://doi.org/10.1002/lpor.202000215 SN - 1863-8899 VL - 14 IS - 10 SP - 2000215-1 EP - 2000215-25 PB - Wiley CY - Berlin AN - OPUS4-51408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -