TY - CONF A1 - Rachmatulin, Natalia A1 - Gardei, André A1 - von Werder, Julia A1 - Meng, Birgit A1 - Süßmuth, J. A1 - Gerdes, A. A1 - Ballschuh, D. A1 - Seibt, H. T1 - Funktionalisierung von Polymerfasern - ein Beitrag der Tensidchemie für dauerhafte zementgebundene Werkstoffe N2 - Im Gegensatz zur Druckfestigkeit weisen zementgebundene Werkstoffe i. a. nur geringe Zugfestigkeiten auf. Ein Weg, Zugfestigkeiten zementgebundener Werkstoffe zu erhöhen und Rissbildung aufgrund von Zugspannungen zu verringern, besteht in der Einarbeitung von Fasern, die diese Spannungen aufnehmen. Häufig eingesetzt werden Stahlfasern, obwohl synthetische Polymerfasern leichter und meist beständiger gegenüber chemischen Angriffen und Korrosion sind. Die Polymerfasern zeigen allerdings meist einen deutlich schwächeren Haftverbund, was an der hydrophoben Faseroberfläche liegt. Um nun eine Anbindung der Fasern an die mineralische Matrix zu erreichen, müssen die Faseroberflächen modifiziert werden, ohne dass die mechanischen Eigenschaften negativ beeinflusst werden. Eine Herausforderung besteht somit in einer Oberflächenmodifikation durch eine schonende Behandlung der Fasern zur Erzeugung von anbindungsfähigen Gruppen. Durch eine Behandlung von modifizierten Fasern mit geeigneten Polymerlösungen werden die Oberflächeneigenschaften verändert und erlauben eine Anbindung an die Zementsteinmatrix. Der Einsatz von Tensiden als grenzflächenaktive Verbindungen ermöglicht in diesem Zusammenhang eine Vermittlung zwischen Polymeroberflächen und mineralischen Werkstoffen. T2 - HighTechMatBau CY - Berlin, Germany DA - 31.01.2018 KW - Zementgebundene Baustoffe KW - Lichtmikroskopie KW - Röntgen-3D-Computertomographie KW - Einzelfaserdurchzugsversuch KW - Windkanal KW - Fasermodifikation KW - Oberflächenfunktionalisierung KW - Grenzflächenaktive Verbindung PY - 2018 SN - 978-3-7388-0082-1 SP - 31 EP - 35 PB - Fraunhofer IRB Verlag CY - Stuttgart AN - OPUS4-44651 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rachmatulin, Natalia A1 - Gardei, André A1 - von Werder, Julia A1 - Meng, Birgit A1 - Süßmuth, J. A1 - Gerdes, A. T1 - Funktionalisierung von Polymerfasern - ein Beitrag der Tensidchemie für dauerhafte zementgebundene Werkstoffe N2 - Im Gegensatz zur Druckfestigkeit weisen zementgebundene Werkstoffe i. a. nur geringe Zugfestigkeiten auf. Ein Weg, Zugfestigkeiten zementgebundener Werkstoffe zu erhöhen und Rissbildung aufgrund von Zugspannungen zu verringern, besteht in der Einarbeitung von Fasern, die diese Spannungen aufnehmen. Häufig eingesetzt werden Stahlfasern, obwohl synthetische Polymerfasern leichter und meist beständiger gegenüber chemischen Angriffen und Korrosion sind. Die Polymerfasern zeigen allerdings meist einen deutlich schwächeren Haftverbund, was an der hydrophoben Faseroberfläche liegt. Um nun eine Anbindung der Fasern an die mineralische Matrix zu erreichen, müssen die Faseroberflächen modifiziert werden, ohne dass die mechanischen Eigenschaften negativ beeinflusst werden. Eine Herausforderung besteht somit in einer Oberflächenmodifikation durch eine schonende Behandlung der Fasern zur Erzeugung von anbindungsfähigen Gruppen. Durch eine Behandlung von modifizierten Fasern mit geeigneten Polymerlösungen werden die Oberflächeneigenschaften verändert und erlauben eine Anbindung an die Zementsteinmatrix. Der Einsatz von Tensiden als grenzflächenaktive Verbindungen ermöglicht in diesem Zusammenhang eine Vermittlung zwischen Polymeroberflächen und mineralischen Werkstoffen. T2 - HighTechMatBau CY - Berlin, Germany DA - 31.01.2018 KW - Zementgebundene Baustoffe KW - Lichtmikroskopie KW - Röntgen-3D-Computertomographie KW - Einzelfaserdurchzugsversuch KW - Windkanal KW - Fasermodifikation KW - Oberflächenfunktionalisierung KW - Grenzflächenaktive Verbindung PY - 2018 AN - OPUS4-44652 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stelzner, Ludwig A1 - Powierza, Bartosz ED - Breit, W. ED - Kurz, W. ED - Pahn, M. ED - Sadegh-Azar, H. ED - Schnell, J. ED - Thiele, C. T1 - Thermisch induzierter Feuchtetransport in HPC N2 - Die Entwicklung von leistungsfähigen Fließmitteln in den letzten Jahrzehnten ermöglicht die Herstellung von Beton mit sehr geringem w/z-Wert, bei gleichzeitig guter Verarbeitbarkeit. Die Reduzierung des w/z-Wertes führt zu einer Erhöhung der Festigkeit und zu einer Verdichtung der Gefügestruktur. Aufgrund der hohen Druckfestigkeit finden Hochleistungsbetone vermehrten Einsatz im Hoch-, Brücken-, und Tunnelbau. Allerdings neigen diese Hochleistungsbetone unter Brandbeanspruchung zu explosionsartigen Abplatzungen, die nach derzeitigem Stand auf thermomechanische und thermohydraulische Prozesse zurückgeführt werden. Letztere beruhen auf der Generierung hoher Wasserdampfdrücke in einseitig brandbeanspruchten Betonbauteilen, die zum einen auf die geringe Permeabilität des Hochleistungsbetons und zum anderen auf die Bildung einer wassergesättigten Zone, der sogenannten „moisture clog“ zurückzuführen sind. Dabei spielen Verdampfungs- und Kondensationsvorgänge sowie der vorhandene Temperaturgradient eine wichtige Rolle. Die Interaktion des Feuchtetransportes mit den Gefügeveränderungen während der thermischen Beanspruchung soll im Rahmen weiterer Versuche eingehend untersucht werden. Zur Analyse des Feuchtetransports während der thermischen Beanspruchung werden miniaturisierte Prüfkörper aus Hochleistungsbeton hergestellt, die mit Hilfe eines elektrischen Heizelements einseitig erwärmt werden. Zur Sicherstellung eines eindimensionalen Wärme- und Feuchtetransportes ist der Betonprüfkörper mit einer speziellen Glaskeramik und einer Hochtemperaturwolle ummantelt. Simultan zur Erwärmung werden eine Reihe röntgentomografischer Aufnahmen durchgeführt. Durch Differenzbildung aufeinanderfolgender Aufnahmen können Dichteveränderungen lokal und zeitlich werden, die Rückschlüsse auf Änderungen der Feuchteverteilung im Prüfkörper während der Erwärmung zulassen. Parallel dazu werden Untersuchungen mittels NMR-Relaxometrie (nuclear magnetic resonance) vor und nach der thermischen Beanspruchung durchgeführt. Die entwickelte Prüfmethodologie ermöglicht es, Veränderungen der Feuchteverteilung infolge thermischer Beanspruchung im Hochleistungsbeton von den Gelporen bis hin zu vorhandenen Verdichtungsporen abzubilden. Erste Ergebnisse zeigen, dass die gewählten Untersuchungsmethoden Veränderungen der Feuchteverteilung im Prüfkörper räumlich und zeitlich auflösen können. T2 - 5. DAfStb-Jahrestagung mit 58. Forschungskolloquium CY - Kaiserslautern, Germany DA - 20.09.2017 KW - Baustoffe KW - Abplatzen KW - Brand KW - Feuchtetransport KW - Hochleistungsbeton KW - Röntgen-3D-Computertomographie KW - NMR KW - ZfP PY - 2017 SN - 978-3-00-057267-8 VL - Band 1 SP - 162 EP - 173 AN - OPUS4-42565 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stelzner, Ludwig A1 - Powierza, B. T1 - Thermisch induzierter Feuchtetransport in HPC N2 - Die Entwicklung von leistungsfähigen Fließmitteln in den letzten Jahrzehnten ermöglicht die Herstellung von Beton mit sehr geringem w/z-Wert, bei gleichzeitig guter Verarbeitbarkeit. Die Reduzierung des w/z-Wertes führt zu einer Erhöhung der Festigkeit und zu einer Verdichtung der Gefügestruktur. Aufgrund der hohen Druckfestigkeit finden Hochleistungsbetone vermehrten Einsatz im Hoch-, Brücken-, und Tunnelbau. Allerdings neigen diese Hochleistungsbetone unter Brandbeanspruchung zu explosionsartigen Abplatzungen, die nach derzeitigem Stand auf thermomechanische und thermohydraulische Prozesse zurückgeführt werden. Letztere beruhen auf der Generierung hoher Wasserdampfdrücke in einseitig brandbeanspruchten Betonbauteilen, die zum einen auf die geringe Permeabilität des Hochleistungsbetons und zum anderen auf die Bildung einer wassergesättigten Zone, der sogenannten „moisture clog“ zurückzuführen sind. Dabei spielen Verdampfungs- und Kondensationsvorgänge sowie der vorhandene Temperaturgradient eine wichtige Rolle. Die Interaktion des Feuchtetransportes mit den Gefügeveränderungen während der thermischen Beanspruchung soll im Rahmen weiterer Versuche eingehend untersucht werden. Zur Analyse des Feuchtetransports während der thermischen Beanspruchung werden miniaturisierte Prüfkörper aus Hochleistungsbeton hergestellt, die mit Hilfe eines elektrischen Heizelements einseitig erwärmt werden. Zur Sicherstellung eines eindimensionalen Wärme- und Feuchtetransportes ist der Betonprüfkörper mit einer speziellen Glaskeramik und einer Hochtemperaturwolle ummantelt. Simultan zur Erwärmung werden eine Reihe röntgentomografischer Aufnahmen durchgeführt. Durch Differenzbildung aufeinanderfolgender Aufnahmen können Dichteveränderungen lokal und zeitlich werden, die Rückschlüsse auf Änderungen der Feuchteverteilung im Prüfkörper während der Erwärmung zulassen. Parallel dazu werden Untersuchungen mittels NMR-Relaxometrie (nuclear magnetic resonance) vor und nach der thermischen Beanspruchung durchgeführt. Die entwickelte Prüfmethodologie ermöglicht es, Veränderungen der Feuchteverteilung infolge thermischer Beanspruchung im Hochleistungsbeton von den Gelporen bis hin zu vorhandenen Verdichtungsporen abzubilden. Erste Ergebnisse zeigen, dass die gewählten Untersuchungsmethoden Veränderungen der Feuchteverteilung im Prüfkörper räumlich und zeitlich auflösen können. T2 - 5. DAfStb-Jahrestagung mit 58. Forschungskolloquium CY - Kaiserslautern, Germany DA - 20.09.2017 KW - Baustoffe KW - Abplatzen KW - Brand KW - Feuchtetransport KW - Hochleistungsbeton KW - Röntgen-3D-Computertomographie KW - NMR KW - ZfP PY - 2017 AN - OPUS4-42566 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stelzner, Ludwig A1 - Powierza, Bartosz T1 - Thermisch induzierter Feuchtetransport in HPC T1 - Thermally induced Moisture Transport in structure density High-performance Concrete N2 - Die Entwicklung von leistungsfähigen Fließmitteln in den letzten Jahrzehnten ermöglicht die Herstellung von Beton mit sehr geringem w/z-Wert, bei gleichzeitig guter Verarbeitbar-keit. Die Reduzierung des w/z-Wertes geht dabei mit einer Erhöhung der Festigkeit und einer Verdichtung der Gefü-gestruktur einher. Aufgrund der hohen Druckfestigkeit finden diese Hochleistungsbetone vermehrten Einsatz im Hoch-, Brücken-, und Tunnelbau. Unter Brandbeanspruchung neigen diese Hochleistungsbetone allerdings zu explosionsartigen Abplatzungen. Diese werden nach derzeitigem Stand auf thermomechanische und thermohydraulische Prozesse zurückgeführt. Letztere beruhen auf der Generierung hoher Wasserdampfdrücke in einseitig brandbeanspruchten Beton-bauteilen, die zum einen auf die geringe Permeabilität des Hochleistungsbetons und zum anderen auf die Bildung einer wassergesättigten Zone, der sogenannten „moisture clog“ zurückzuführen sind. Dabei spielen Verdampfungs- und Kondensationsvorgänge sowie der vorhandene Temperatur-gradient eine wichtige Rolle. Die Interaktion des Feuchtetra-nsportes mit den Gefügeveränderungen während der thermi-schen Beanspruchung soll im Rahmen weiterer Versuche eingehend untersucht werden. Zur Analyse des Feuchtetransports während der thermischen Beanspruchung wurden miniaturisierte Prüfkörper aus Hoch-leistungsbeton hergestellt, die mit Hilfe eines elektrischen Heizelements einseitig erwärmt wurden. Zur Sicherstellung eines eindimensionalen Wärme- und Feuchtetransportes ist der Betonprüfkörper mit einer speziellen Glaskeramik und einer Hochtemperaturwolle ummantelt. Simultan zur Erwär-mung werden eine Reihe röntgentomographischer Aufnah-men durchgeführt. Durch Differenzbildung aufeinanderfol-gender Aufnahmen können Dichteveränderungen lokal und zeitlich aufgelöst werden. Diese lassen Rückschlüsse auf Än-derungen der Feuchteverteilung im Prüfkörper während der Erwärmung zu. Parallel dazu werden Untersuchungen mittels NMR-Relaxometrie (nuclear magnetic resonance) vor und nach der thermischen Beanspruchung durchgeführt. Diese Prüfmethodologie ermöglicht es erstmals, die Veränderungen der Feuchteverteilung infolge thermischer Beanspruchung im Hochleistungsbeton von den Gelporen bis hin zu vorhande-nen Verdichtungsporen abzubilden. So zeigen erste Ergebnis-se, dass die gewählten Untersuchungsmethoden Veränderun-gen der Feuchteverteilung im Prüfkörper räumlich und zeitlich auflösen können. KW - Abplatzen KW - Spalling KW - Brand KW - Feuchtetransport KW - Hochleistungsbeton KW - Röntgen-3D-Computertomographie KW - NMR KW - Fire KW - Moisture clog KW - Moisture transport KW - HPC KW - HSC KW - X-ray CT PY - 2017 U6 - https://doi.org/10.1002/best.201700022 SN - 0005-9900 SN - 1437-1006 VL - 112 IS - 7 SP - 486 EP - 486 PB - Ernst & Sohn CY - Berlin AN - OPUS4-41826 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -