TY - CONF A1 - Lehmusto, Juho T1 - Initial oxidation of the refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr N2 - In contrast to traditional alloys, which are typically based on a single dominant element, high-entropy alloys (HEAs) consist of five or more principal elements in roughly equal proportions. These complex alloys often exhibit superior characteristics compared to conventional alloys, including enhanced strength and hardness, exceptional wear resistance, high structural stability, and strong resistance to oxidation. Despite these promising characteristics, the vast compositional space of HEAs means that only a limited number have been thoroughly investigated for their mechanical and chemical behavior. One notable example is the refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr, which represents a newly emerging class of materials. This alloy features a nanoscale microstructure composed of B2 and bcc phases, resulting in compressive strength at elevated temperatures that surpasses that of conventional Ni-based superalloys. Such performance offers potential benefits for improving turbine efficiency in aerospace and energy generation applications. However, the alloy’s microstructure is known to be sensitive to annealing. Specifically, its mechanical properties deteriorate when intragranular hexagonal Al-Zr-based intermetallic compounds form, likely due to issues with phase stability. On the other hand, the inclusion of Al has been shown to enhance oxidation resistance. Nevertheless, HEAs are also known to develop pronounced internal aging zones caused by diffusion during oxidation processes. These findings indicate a need for further investigation into the thermodynamic stability of this alloy. In addition, its oxidation behavior—both at the surface and within the material—remains incompletely understood. This ongoing research explores the oxidation behavior of the AlMo0.5NbTa0.5TiZr alloy at temperatures ranging from 800 °C to 1000 °C. The influence of water vapor on the oxidation process is also examined. Ultimately, the goal is to integrate insights into the alloy’s structural, mechanical, and chemical characteristics at high temperatures. T2 - Gordon Research Conference - High Temperature Corrosion CY - New London, United States DA - 16.07.2023 KW - High-Entropy superalloy KW - Phase stability KW - Microstructural evolution KW - Oxidation behavior KW - High-Temperature Performance PY - 2023 AN - OPUS4-63851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marschall, Niklas T1 - Spinodal Decomposition in FeMnNiCoCu: Alloying effects N2 - Spinodal decomposition in multi-component alloys remains insufficiently understood, particularly when multiple driving forces govern phase evolution. Chemical thermodynamics provides reliable predictions of spinodal instabilities, but elastic energy contributions can significantly alter the boundaries of phase stability. In this work, we establish a framework to analyze phase stability in high-entropy alloys by combining Hessian-based spinodal analysis with convex hull constructions that capture miscibility gaps. This approach allows us to disentangle the roles of chemical, elastic, and kinetic factors in early-stage decomposition. Our results highlight how elastic contributions can extend the effective spinodal region beyond chemically predicted boundaries, thereby influencing microstructural pathways. This combined stability analysis offers new insights into the mechanisms governing decomposition and advancing the theoretical understanding of phase evolution in high-entropy alloys. T2 - FEMS EUROMAT 2025 CY - Granada, Spain DA - 14.09.2025 KW - High-entropy alloy KW - Elasticity KW - Phase stability KW - Hessian KW - Convex hull PY - 2025 AN - OPUS4-64263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza A1 - Wang, L. T1 - Elastic energy of multi-component solid solutions and strain origins of phase stability in high-entropy alloys N2 - The elastic energy of mixing for multi-component solid solutions is derived by generalizing Eshelby's sphere-in-hole model. By surveying the dependence of the elastic energy on the chemical composition and lattice misfit, we derive a lattice strain coefficient λ*. Studying several high-entropy alloys and superalloys, we propose that most solid solution multi-component alloys are stable when λ*<0.16, generalizing the Hume-Rothery atomic-size rule for binary alloys. We also reveal that the polydispersity index δ, frequently used for describing strain in multi-component alloys, directly represents the elastic energy e with e=qδ², q being an elastic constant. Furthermore, the effects of (i) the number and (ii) the atomic-size distribution of constituting elements on the phase stability of high-entropy alloys were quantified. The present derivations and discussions open for richer considerations of elastic effects in high-entropy alloys, offering immediate support for quantitative assessments of their thermodynamic properties and studying related strengthening mechanisms. KW - Ordering KW - High-entropy alloys KW - Alloy design KW - Strain energy KW - Phase stability PY - 2022 DO - https://doi.org/10.1016/j.scriptamat.2021.114226 SN - 1359-6462 VL - 206 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-53427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sözen, H.I. A1 - Ener, S. A1 - Maccari, F. A1 - Fayyazi, B. A1 - Gutfleisch, O. A1 - Neugebauer, J. A1 - Hickel, Tilmann T1 - Combined ab initio and experimental screening of phase stabilities in the Ce-Fe-Ti-X system (X = 3d and 4d metals) N2 - One of the main challenges for the synthesis and application of the promising hard-magnetic compound CeFe11Ti is the formation of Laves phases that are detrimental for their thermodynamic stability and magnetic properties. In this paper, we present an ab initio based approach to modify the stability of these phases in the Ce-Fe-Ti system by additions of 3d and 4d elements. We combine highly accurate free-energy calculations with an efficient screening technique to determine the critical annealing temperature for the formation of Ce(Fe,X)11Ti. The central findings are the dominant role of the formation enthalpy at T = 0 K on chemical trends and the major relevance of partial chemical decompositions. Based on these insights, promising transition metals to promote the stability of the hard-magnetic phase, such as Zn and Tc, were predicted. The comparison with suction casting and reactive crucible melting experiments for Ce-Fe-Ti-X (X = Cu, Ga, Co, and Cr) highlights the relevance of additional phases and quaternary elements. KW - Density functional theory KW - Phase stability KW - Energy materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568850 DO - https://doi.org/10.1103/PhysRevMaterials.7.014410 SN - 2475-9953 VL - 7 SP - 1 EP - 15 AN - OPUS4-56885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -