TY - RPRT A1 - Bartczak, D. A1 - Hodoroaba, Vasile-Dan T1 - Report on the development and validation of the reference material candidates with non-spherical shape, non-monodisperse size distributions and accurate nanoparticle concentrations T2 - Community EMPIR Project 17NRM04 nPSize (Improved traceability chain of nanoparticle size measurements) N2 - One aim of the EMPIR nPSize project 17NRM04 was to develop and validate three classes of candidate reference (test) materials (RTMs), with i) well-defined non-spherical shape, ii) relatively high polydispersity index, and iii) accurate particle concentrations. To fulfil the requirements of the project, 11 different types of materials were prepared. Following the initial assessment of the materials suitability, nPSize5_PT_UNITO, nPSize6_AC_UNITO and nPSize7_GN_CEA materials were found unsuitable for the project, due to various reasons. PT material was deemed unsuitable due to its predominantly agglomerated nature. AC material contained relatively high amount of impurities (other particle forms). GN material was found too heterogeneous in both the length and width for the purpose of the project. The remaining 8 candidate RTMs were assessed for their homogeneity and stability and used for successful delivery of the associated activities within the nPSize project. KW - Nanoparticles KW - Particle size distribution KW - Reference materials KW - Non-spherical shape KW - EMPIR nPSize KW - Electron microscopy KW - AFM KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556015 DO - https://doi.org/10.5281/zenodo.7016466 SP - 1 EP - 22 PB - Zenodo CY - Geneva AN - OPUS4-55601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. A1 - Goenaga-Infante, H. T1 - Challenges in Traceable Size Measurement of Non-Spherical, Non-Monodisperse Nanoparticles - nPSize N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs.zeige mehr T2 - Nanoparticle Reference Materials - Production and Cerification Training Course CY - London, UK DA - 10.12.2019 KW - Nanoparticles KW - Traceability KW - Particle size distribution KW - Electron microscopy KW - Reference materials KW - Non-spherical shape PY - 2019 AN - OPUS4-50040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -