TY - CONF A1 - Launert, B. A1 - Rhode, Michael A1 - Kromm, Arne A1 - Pasternak, H. A1 - Kannengießer, Thomas T1 - Residual stress influence on the flexural buckling of welded I-girders N2 - Welded plate girders are used in heavy steel construction, industrial buildings and bride construction. Residual stresses are present in all plate structures. They are mainly caused by welding. In addiiton, they influence the load bearing capacity of these welded components. However, Eurocode (EC) does not provide any specific residual stress patterns for consideration of residual stress impact on load capacity. Hence, the decision for a particular problem has to be made by the designer. Many codes, including EC 3, permit the use of non-linear finite element analysis (FEA) for the design of structures. Recent developments in the last years, enabled the use of computerized models instead of laboratory experiments. In this scope, the FE-model should include all relevant factors properly. This important if considering that weld residual stresses can be a critical assessment factor. In addition, measuring of residual stresses is difficult, time consuming and expensive, it is therefore common to use founded distribution functions (e.g. Swedish BSK 99). Welding simulation tools offer new possibilities for a realistic assessment of weld-induced stresses and deformations. However, the modeling and the computational effort for large structural components is still not in a practicable range and a simplified methodology is in needed. As a result, a new approach (suitable for capacity analysis) is presented and detailed in the present contribution. T2 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 03.07.2016 KW - Welding KW - Residual stresses KW - Load capacity KW - Numerical modeling KW - Component PY - 2016 AN - OPUS4-37027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nery de Araújo Neto, Gilberto A1 - Hille, Falk A1 - Rogge, Andreas T1 - Post-impact assessment of reinforced concrete plate load capacity N2 - The modeling and prediction of the behavior of reinforced concrete under impact load is still an engineering challenge. The scientific community has put a lot of effort into the development of this knowledge, especially after the unfortunate events of 09/11 in Manhattan. The main concern is with nuclear power plants and how to design structures that can withstand such extreme situations. An experimental investigation has been carried out to collect fundamental data and to develop a deeper understanding of the effect of impact damage on the load capacity of concrete plates. The paper presents the process on the definition of procedures and the first results of an experimental investigation on the damage and residual load capacity of reinforced concrete plates after impact load. Two types of reinforced concrete plates measuring 1.5 x 1.5 x 0.3 m were subjected to the impact of a flat-nose hard projectile. The two types were casted with the same reinforcement and 80 or 40 MPa concrete. After the impact, the plates go through planar tomography, visual inspection and an ultimate load capacity test. The results showed that the planar tomography can be used for the assessment of internal damage on concrete plates, as long as the number of scans in each direction is more than four. The visual inspection gave a good. The formation of cone cracking after the impact load showed the highest influence on the remaining load capacity of the concrete plates. More plates will be tested to confirm the indications at different damage conditions. T2 - International Concrete Sustainability Conference 2016 CY - Washington DC, USA DA - 15.05.2016 KW - Impact damage KW - Concrete damage KW - Load capacity PY - 2016 SP - Paper Nery, 1 EP - 9 AN - OPUS4-36621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nery de Araújo Neto, Gilberto A1 - Hille, Falk A1 - Rogge, Andreas T1 - Post-impact assessment of reinforced concrete plate load capacity N2 - The modeling and prediction of the behavior of reinforced concrete under impact load is still an engineering challenge. The scientific community has put a lot of effort into the development of this knowledge, especially after the unfortunate events of 09/11 in Manhattan. The main concern is with nuclear power plants and how to design structures that can withstand such extreme situations. An experimental investigation has been carried out to collect fundamental data and to develop a deeper understanding of the effect of impact damage on the load capacity of concrete plates. The paper presents the process on the definition of procedures and the first results of an experimental investigation on the damage and residual load capacity of reinforced concrete plates after impact load. Two types of reinforced concrete plates measuring 1.5 x 1.5 x 0.3 m were subjected to the impact of a flat-nose hard projectile. The two types were casted with the same reinforcement and 80 or 40 MPa concrete. After the impact, the plates go through planar tomography, visual inspection and an ultimate load capacity test. The results showed that the planar tomography can be used for the assessment of internal damage on concrete plates, as long as the number of scans in each direction is more than four. The visual inspection gave a good. The formation of cone cracking after the impact load showed the highest influence on the remaining load capacity of the concrete plates. More plates will be tested to confirm the indications at different damage conditions. T2 - International Concrete Sustainability Conference 2016 CY - Washington, DC, USA DA - 15.05.2016 KW - Load capacity KW - Impact damage KW - Concrete damage PY - 2016 AN - OPUS4-36624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -