TY - CHAP A1 - Symietz, Christian A1 - Krüger, Jörg ED - Vilar, Rui T1 - Stability of laser surface modified implants N2 - A new technique to fix bioceramic powder on a titanium alloy by using femtosecond laser pulses is presented. It is shown that gentle fixation of a bioactive dielectric material on a metallic model implant is successful. This is potentially a new tool for the improvement of bone prostheses. An advantage of the ultrashort pulses is the very low heat influx into the whole sample. There is only a very thin interaction zone during the fixing, which is the metal surface in contact with the ceramic layer. Neither the fixed ceramic particles nor the major part of the metal suffer any modification. The stability of the model implant (ceramic on metal) is investigated by rotating bending fatigue tests. No indication of a reduction of the mechanical stability compared to untreated metallic reference samples was found. KW - Bone implant KW - Calcium phosphate coating KW - Femtosecond laser KW - Laser-induced fixation KW - Titanium alloy PY - 2016 SN - 978-0-08-100883-6 SN - 978-0-08-100942-0 U6 - https://doi.org/10.1016/B978-0-08-100883-6.00004-6 SN - 2049-9485 IS - 111 SP - Chapter 4, 127 EP - 143 PB - Elsevier ET - 1st edition AN - OPUS4-36790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -