TY - JOUR A1 - Zutta Villate, J. M. A1 - Viviana Rojas, J. A1 - Hahn, Marc Benjamin A1 - Anselmo Puerta, J. T1 - Synthesis of 198Au nanoparticles sub 10 nm due optimization on local dose by Monte Carlo simulations for cancer treatment N2 - To enhance the biological effects of radiation damage in cancerous cells, we present an alternative approach to the use of gold nanoparticles (AuNP), focusing on the synthesis and characterization of highly monodisperse, spherical radioactive gold nanoparticles 198AuNP. The size of the AuNP size was optimized with the help of Geant4/TOPAS particle scattering simulations, and energy deposition per nm3 per decay for varying radii (2–10 nm) was evaluated. This work is the foundation for ongoing experimental work to evaluate cell death induced by 198AuNP which aims for the use of radioactive gold nanoparticles in cancer treatment. KW - AuNP KW - Beta decay KW - Beta particle KW - Brachytherapy KW - Cancer treatment KW - Nanoparticles KW - Nanoparticle KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Gamma ray KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - Synthesis KW - TEM KW - OH radicals KW - Particle scattering KW - Radiation damage KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio PY - 2022 U6 - https://doi.org/10.1007/s10967-022-08355-5 SN - 1588-2780 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-55132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined.[1] Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. [2] These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for ongoing experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. T2 - NALS 2022 CY - Santander, Spain DA - 27.04.2022 KW - AuNP KW - Beta decay KW - beta particle KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - particle scattering KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio PY - 2022 AN - OPUS4-54775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - Radioactive gold nanoparticles for cancer treatment: Size and cluster dependent damage studied by Geant4 Monte-Carlo simulations N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive ¹⁹⁸Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply ¹⁹⁸AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - DNA KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - MCS KW - Nanoparticle KW - AuNP KW - Gold Nanoparticle KW - low energy electrons KW - LEE KW - OH radicals KW - particle scattering KW - Radiationtherapy KW - Radioactive decay KW - Monte-Carlo simulation KW - Energy deposit KW - DNA damage PY - 2019 AN - OPUS4-48763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Zutta Villate, Julian Mateo T1 - Radioactive gold nanoparticles for cancer treatment: Size and cluster dependent damage studied by Geant4 Monte-Carlo simulations N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive ¹⁹⁸Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply ¹⁹⁸AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. KW - Gold Nanoparticles KW - AuNP KW - Radioactive decay KW - Beta decay KW - DNA KW - DNA damage KW - Radiation damage KW - MCS KW - Monte-Carlo simulation KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - Cancer treatment KW - Radiationtherapy KW - Brachytherapy KW - OH radicals KW - LEE KW - low energy electrons KW - gamma ray KW - beta particle KW - radiolysis KW - clustered nanoparticles KW - NP KW - Simulation KW - particle scattering KW - Geant4-DNA KW - Energy deposit PY - 2019 U6 - https://doi.org/10.1140/epjd/e2019-90707-x SN - 1434-6060 SN - 1434-6079 VL - 73 IS - 5 SP - 95, 1 EP - 7 PB - Springer CY - Berlin Heidelberg AN - OPUS4-47952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg T1 - In situ monitoring of the influence of water on DNA radiation damage by near-ambient pressure X-ray photoelectron spectroscopy N2 - Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS xperiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. KW - DNA KW - XPS KW - NAP-XPS KW - Radiation damage KW - Single-strand break (SSB) KW - Double-strand break (DSB) KW - Xray KW - OH radical KW - Hydroxyl radical KW - LEE KW - Low energy electrons KW - Dosimetry KW - Geant4 KW - Geant4-DNA KW - TOPAS KW - TOPAS-nbio KW - Microdosimetry KW - DNA radiation damage KW - Direct damage KW - Indirect damage KW - Quasi-direct damage KW - Hydration shell KW - Dry DNA KW - Hydrated DNA KW - ROS KW - Radical KW - Reactive oxygen species KW - Net-ionization reaction KW - Radiation therapy KW - Cancer therapy KW - Xray photo electron spectrocopy KW - Near ambient pressure xray photo electron spectroscopy KW - Base damage KW - Base loss KW - Dissociative electron transfer (DET) KW - Dissociative electron attachment (DEA) KW - Hydrated electron KW - Prehydrated electron KW - Ionization KW - PES PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524060 SN - 2399-3669 VL - 4 IS - 1 SP - 50 PB - Springer Nature CY - London AN - OPUS4-52406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined.[1] Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. [2] These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for ongoing experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radiotherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - beta particle KW - particle scattering PY - 2023 AN - OPUS4-57060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Inside back cover for the article "Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine" N2 - Showcasing research from the Federal Institute for Material Research and Testing Berlin and Fraunhofer Institute for Celltherapy and Immunology Branch Bioanalytics and Bioprocesses Potsdam. Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine. We aimed to increase the possible undisturbed exposure time during bio-SAXS measurements of single-stranded DNA-binding proteins. Therefore small angle X-ray scattering was performed on Gene-V Protein (G5P/GVP), which is involved in DNA repair processes. To achieve this, irradiations were performed in presence and absence of the hydroxyl-radical scavenger and osmolyte Ectoine, which showed efficient radiation protection and prevented protein aggregation, thus allows for a non-disturbing way to improve structure-determination of biomolecules. KW - Bio-SAXS KW - BioSAXS KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Protein KW - Protein unfolding KW - Radiation damage KW - Radical Scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas-MC KW - Topas-nBio KW - TopasMC KW - X-ray scattering KW - Particle scatterin simulations KW - ssDNA PY - 2023 U6 - https://doi.org/10.1039/D3CP90056H SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5889 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-57006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine N2 - Small-angle X-ray scattering (SAXS) can be used for structural determination of biological macromolecules and polymers in their native states (e.g. liquid phase). This means that the structural changes of (bio-)polymers, such as proteins and DNA, can be monitored in situ to understand their sensitivity to changes in chemical environments. In an attempt to improve the reliability of such experiments, the reduction of radiation damage occurring from exposure to X-rays is required. One such method, is to use scavenger molecules to protect macromolecules against radicals produced during radiation exposure, such as reactive oxygen species (ROS). In this study we investigate the feasibility of applying the compatible solute, osmolyte and radiation protector Ectoine (THP(B)), as a scavenger molecule during SAXS measurements of the single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). In this case, we monitor the radiation induced changes of G5P during bio-SAXS measurments and the resulting microscopic energy-damage relation was determined from microdosimetric calculations by Monte-Carlo based particle scattering simulations with TOPAS/Geant4 and a custom target-model. This resulted in a median-lethal energy deposit of pure G5P at 4 mg mL−1 of E1/2 = 7 ± 5 eV, whereas a threefold increase of energy-deposit was needed under the presence of Ectoine to reach the same level of damage. This indicates that Ectoine increases the possible exposure time before radiation-damage to G5P is observed. Furthermore, the dominant type of damage shifted from aggregation in pure solutions towards a fragmentation for solutions containing Ectoine as a cosolute. These results are interpreted in terms of indirect radiation damage by reactive secondary species, as well as post-irradiation effects, related to preferential-exclusion of the cosolute from the protein surface. Hence, Ectoine is shown to provide a non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. KW - BioSAXS KW - Bio-SAXS KW - Cosolute KW - Ectoine KW - G5P KW - GVP KW - Radiation damage KW - Radical Scavenger KW - Single-stranded DNA-binding proteins KW - X-ray scattering KW - DNA KW - ssDNA KW - Protein KW - SAXS KW - Small-angle xray scattering KW - McSAS3 KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - Geant4-DNA KW - Topas KW - Topas-MC KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Topas-nBio KW - OH Radical KW - OH radical scavenger KW - LEE KW - Ionizing radiation damage KW - Protein unfolding KW - Ectoin PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568909 SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5372 EP - 5382 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - BP150: Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. We apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. T2 - DPG Frühjahrstagung CY - Dresden, Germany DA - 26.03.2023 KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Radiotherapy KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - Beta particle KW - Particle scattering KW - Protein KW - Proteins PY - 2023 AN - OPUS4-57253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. T1 - Extending Bio-SAXS measurements of Single-Stranded DNA-Binding Proteins: Radiation Protection of G5P by Cosolutes N2 - Small-angle X-ray scattering (SAXS) can be used for structural de- termination of biological macromolecules and polymers in their na- tive states. To improve the reliability of such experiments, the re- duction of radiation damage occurring from exposure to X-rays is needed.One method, is the use of scavenger molecules that protect macromolecules against radicals produced by radiation exposure.In this study we investigate the feasibility to apply the compatible solute, osmolyte and radiation protector Ectoine (THP(B)) as a scavenger throughout SAXS measurements of single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). Therefore we monitor the radiation induced changes of G5P during bio-SAXS. The resulting microscopic energy-damage relation was determined by particle scattering simu- lations with TOPAS/Geant4. The results are interpreted in terms of radical scavenging as well as post-irradiation effects, related to preferential-exclusion from the protein surface. Thus, Ectoine provides an non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. T2 - MultiChem Conference 2023 CY - Prague, Czech Republic DA - 26.04.2023 KW - Bio-SAXS KW - BioSAXS KW - Compatible solute KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - Ectoin KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Gene five protein KW - Hydroxyectoine KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Osmolyte KW - Particle scattering simulations KW - Protein KW - Protein unfolding KW - Proteins KW - ROS KW - Radiation damage KW - Radical Scavenger KW - Radical scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas KW - Topas-MC KW - Topas-nBio KW - X-ray scattering KW - ssDNA KW - Median lethal energy deposit PY - 2023 AN - OPUS4-57407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -