TY - CONF A1 - Duarte, Larissa A1 - Zerbst, Uwe A1 - Madia, Mauro T1 - Investigation on the influence of different testing methods and parameters on the determination of fatigue crack growth data N2 - The correct determination of fatigue crack propagation data is of great importance for the damage tolerance design of engineering components, especially with regard to the calculation of residual lifetime and the establishment of inspection intervals. The fatigue crack propagation threshold Δ𝐾th, in this respect, is a crucial input parameter for simulating crack growth, since it corresponds to the stress intensity factor range at which a non-growing crack starts to propagate. However, the experimental determination of Δ𝐾th, as well as its application, is still confronted with few issues related among others to the load ratio (R) dependency of Δ𝐾th, the testing procedure, and environmental effects. These can lead to large scatter and significant errors in the prediction of component failure. In this context, the use of the intrinsic fatigue crack propagation threshold Δ𝐾th,eff in component assessment is a promising alternative, since it does not depend on a number of factors that affect Δ𝐾th, but only on the elastic properties (𝐸-modulus) and the lattice (Burger’s vector ‖𝑏‖) of the material. The aim of the present work is therefore to investigate different experimental procedures for the determination of Δ𝐾th,eff, namely: (a) conventional load reduction (LR) procedures, (b) the 𝐾max procedure and (c) compression pre-cracking load reduction and constant amplitude (respectively CPLR and CPCA) methods. Furthermore, the determination of Δ𝐾th has been carried out varying some testing parameters, such as test frequency, Δ𝐾 at the beginning of the crack propagation test (Δ𝐾0) and stress ratio (R). The results are statistically analyzed and a discussion about the use of Δ𝐾th and Δ𝐾th,eff for the component fatigue assessment is presented. T2 - 6th. International Virtual Conference of Engineering Against Failure CY - Online meeting DA - 23.06.2021 KW - Crack closure KW - Damage tolerance assessment KW - Residual lifetime KW - Intrinsic fatigue crack propagation threshold PY - 2021 AN - OPUS4-52899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -