TY - CONF A1 - Baensch, Franziska A1 - Sanabria, S. T1 - Der Verformungswiderstand im Holz und die Rolle der Holzstrahlen N2 - Von den Zellulosefibrillen über die Zellwand und die Anordnung der Früh- und Spätholzzellen in einem Jahrring bis hin zum Balken von Natur aus ist Holz ein optimierter Hochleistungswerkstoff, der Handwerker, Architekten, Ingenieure und Wissenschaftler fasziniert und begeistert. Im digitalen Zeitalter werden neben Standard-Laborexperimenten zunehmend Modelle und Simulationen eingesetzt, um das Verhalten des Materials unter verschiedenen Belastungen besser zu verstehen und vorherzusagen. Dazu werden Zahlenwerte von Verformungen im subzellulären Maßstab benötigt, die nun in Experimenten an der TOMCAT-Beamline (TOmographic Microscopy and Coherent rAdiology ExperimenTs) der SLS (Swiss Light Source) gewonnen werden konnten: Holzproben aus Fichte ( Picea abies Karst.) mit einem Prüfquerschnitt von mindestens 1 mm² auf Zug oder Druck beansprucht. Die strukturellen Veränderungen auf Zellebene wurden mittels Computertomographie erfasst. Für die nachträgliche Analyse der 3D-Mikrostruktur von Holz wurde ein Ansatz entwickelt, der es ermöglicht, einzelne Zellen, die in mehreren Tomogrammen unterschiedlicher Belastungszustände erfasst wurden, zu verfolgen. Dabei wurden die Zellgeometrien und das subzelluläre Deformationsverhalten quantifiziert. Unter Zugbelastung beispielsweise verengt sich die Zellwanddicke um ca. 0,8%, das sind bei der gemessenen mittleren Zellwanddicke von 3,5 µm ca. 28 nm. Diese und andere Erkenntnisse liefern nun einen direkten numerischen Zusammenhang zwischen Verformungen der Holzmikrostruktur und dem daraus resultierenden makroskopischen Verhalten. T2 - 5. Holzanatomisches Kolloquium CY - Dresden, Germany DA - 09.09.2021 KW - Holz KW - Wood materials KW - Individual cell tracking KW - Mikro CT PY - 2021 AN - OPUS4-53403 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska A1 - Sanabria, S. T1 - Der Verformungswiderstand im Holz und die Rolle der Holzstrahlen N2 - Von den Zellulosefibrillen über die Zellwand und die Anordnung der Früh- und Spätholzzellen in einem Jahrring bis hin zum Balken von Natur aus ist Holz ein optimierter Hochleistungswerkstoff, der Handwerker, Architekten, Ingenieure und Wissenschaftler fasziniert und begeistert. Im digitalen Zeitalter werden neben Standard-Laborexperimenten zunehmend Modelle und Simulationen eingesetzt, um das Verhalten des Materials unter verschiedenen Belastungen besser zu verstehen und vorherzusagen. Dazu werden Zahlenwerte von Verformungen im subzellulären Maßstab benötigt, die nun in Experimenten an der TOMCAT-Beamline (TOmographic Microscopy and Coherent rAdiology ExperimenTs) der SLS (Swiss Light Source) gewonnen werden konnten: Holzproben aus Fichte ( Picea abies Karst.) mit einem Prüfquerschnitt von mindestens 1 mm² auf Zug oder Druck beansprucht. Die strukturellen Veränderungen auf Zellebene wurden mittels Computertomographie erfasst. Für die nachträgliche Analyse der 3D-Mikrostruktur von Holz wurde ein Ansatz entwickelt, der es ermöglicht, einzelne Zellen, die in mehreren Tomogrammen unterschiedlicher Belastungszustände erfasst wurden, zu verfolgen. Dabei wurden die Zellgeometrien und das subzelluläre Deformationsverhalten quantifiziert. Unter Zugbelastung beispielsweise verengt sich die Zellwanddicke um ca. 0,8%, das sind bei der gemessenen mittleren Zellwanddicke von 3,5 µm ca. 28 nm. Diese und andere Erkenntnisse liefern nun einen direkten numerischen Zusammenhang zwischen Verformungen der Holzmikrostruktur und dem daraus resultierenden makroskopischen Verhalten. T2 - 5. Holzanatomisches Kolloquium CY - Dresden, Germany DA - 09.09.2021 KW - Wood materials KW - Holz KW - Individual cell tracking KW - Mikro CT PY - 2021 SP - 92 EP - 101 CY - Dresden AN - OPUS4-53405 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -