TY - CONF A1 - Brunner-Schwer, Chr. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation on laser cladding of rail steel without preheating N2 - The contact between train wheels and rail tracks is known to induce material degradation in the form of wear, and rolling contact fatigue in the railhead. Rails with a pearlitic microstructure have proven to provide the best wear resistance under severe wheel-rail interaction in heavy haul applications. High speed laser cladding, a state-of-the-art surface engineering technique, is a promising solution to repair damaged railheads. However, without appropriate preheating or processing strategies, the utilized steel grades lead to martensite formation and cracking during deposition welding. In this study, laser cladding of low-alloy steel at very high speeds was investigated, without preheating the railheads. Process speeds of up to 27 m/min and laser power of 2 kW are used. The clad, heat affected zone and base material are examined for cracks and martensite formation by hardness tests and metallographic inspections. A methodology for process optimization is presented and the specimens are characterized for suitability. Within the resulting narrow HAZ, the hardness could be significantly reduced. T2 - Lasers in Manufacturing Conference 2021 CY - Erlangen, Germany DA - 21.06.2021 KW - High speed laser cladding KW - Preheatin KW - Rail tracks KW - Pearlitic microstructure PY - 2021 AN - OPUS4-53974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -