TY - JOUR A1 - Rhode, Michael A1 - Steppan, Enrico A1 - Kannengießer, Thomas A1 - Steger, Jörg ED - Lippold, J. T1 - Effect of hydrogen on mechanical properties of heat affected zone of a reactor pressure vessel steel grade N2 - The steel grade 20MnMoNi5-5 (according to German DIN standard or 16MND5 according to French AFNOR standard) is widely applied in (weld) fabrication of reactor pressure vessel components. Thus, a wide range of welding technologies (like submerged arc welding (SAW) or tungsten inert gas (TIG)) is used resulting in different heat affected zone (HAZ) microstructures. During weld fabrication, the weld joints may take up hydrogen. Especially, the HAZ shows an increased susceptibility for a degradation of the mechanical properties in presence of hydrogen. In addition, the hydrogen-assisted degradation of mechanical properties is influenced by three main local factors: hydrogen concentration, microstructure, and load condition. Hence, the base material (BM) and two different simulated non-tempered as-quenched HAZ microstructures were examined using hydrogen-free and hydrogen-charged tensile specimens. The results indicate that the effect of hydrogen on the degradation is significantly increased in case of the HAZ compared to the BM. In addition, hydrogen has remarkable effect in terms of reduction of ductility. It was ascertained that the degradation of the mechanical properties increases in the order of BM, bainitic HAZ, and the martensitic HAZ. Scanning electron microscope (SEM) investigation showed a distinct change of the fracture topography depended on the microstructure with increasing hydrogen concentration in case of the as-quenched HAZ microstructures. KW - Mechanical properties KW - Pressure vessel steels KW - Heat affected zone KW - Hydrogen KW - Hydrogen embrittlement KW - Low alloy steels PY - 2016 UR - http://link.springer.com/article/10.1007/s40194-016-0325-9 U6 - https://doi.org/10.1007/s40194-016-0325-9 VL - 60 IS - 4 SP - 623 EP - 638 PB - Springer-Verlag GmbH CY - Heidelberg, Germany AN - OPUS4-36454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Steger, Jörg A1 - Böllinghaus, Thomas A1 - Kannengießer, Thomas ED - Lippold, J. ED - Böllinghaus, Thomas ED - Richardson, I. M. T1 - Hydrogen degradation effects on mechanical properties in T24 weld microstructures N2 - Spectacular failure cases of fossil power stations in the recent years exhibited severe cracking in T24 welds. The results show that hydrogen-assisted cracking up to 200 °C cannot be excluded. Hence, it is important to gain a basic understanding on how hydrogen might affect the basic material properties in the respective weld microstructures. The present study focuses on hydrogen degradation of the respective weld microstructures, i.e., the weld metal and the coarse grained heat affected zone, where actually cracking appeared in practice. Tensile tests were carried out for coarse grain heataffected zone (CGHAZ) and the weld metal in uncharged and electrochemically hydrogen-charged condition. It turned out that both microstructures show distinct tendency for gradual degradation of mechanical properties in the presence of increasing hydrogen concentration. Already for a hydrogen concentration about and above 2 ml/100 g Fe, a significant ductility reduction has been observed. SEM investigations revealed that the fracture topography changes from ductile topography in uncharged condition to intergranular topography for the CGHAZ and to ductile-brittle mix for the weld metal (WM) in hydrogen charged condition. Ti-rich inclusions were identified as central regions of quasi-cleavage fracture areas in the WM. An approximation procedure is applied to quantify the degradation intensity. KW - Low alloy steels KW - Hydrogen embrittlement KW - Heat affected zone KW - Microstructure KW - Creep resisting materials PY - 2016 UR - http://link.springer.com/article/10.1007/s40194-015-0285-5 U6 - https://doi.org/10.1007/s40194-015-0285-5 SN - 0043-2288 VL - 60 IS - 2 SP - 201 EP - 216 PB - Springer-Verlag GmbH CY - Heidelberg AN - OPUS4-35390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenreck, Thora A1 - Kromm, Arne A1 - Böllinghaus, Thomas T1 - Investigation of Physically Simulated Weld HAZ and CCT-diagram of HSLA steel N2 - The phase transformation under various cooling rates and in different HAZ regions for high strength armour steel was analysed by dilatometry. To develop a Continuous Colling Transformation (CCT) diagram, the samples were heated up to a peak temperature of 1250 °C to achieve a coarse grained microstructure and then cooled down with a cooling time t8/5 varying from 3 s to 240 s. Analysis of dilatation curves revealed the austenite decomposition process, during which transformation temperatures were determined. The results showed martensitic transformations for all welding relevant cooling times. Furthermore, to analyse different heat affected subzones of the weld, the peak temperature was varied between 550 °C and 1250 °C at a constant cooling time t8/5 of 6 s. The simulated coarse grained heat affected zone (CGHAZ) and fine grained heat affected zone (FGHAZ) showed only martensitic transformations with transformation temperatures below 400 °C. The steel exhibited an inhomogeneous hardness with hardening in the CGHAZ and FGHAZ and softening in the intercritical and subcritical HAZ. The physically simulated microstructure was validated by a real hybrid laser-arc weld microstructure. T2 - IIW Intermediate meeting, IX-L CY - Trollhättan, Sweden DA - 06.03.2017 KW - Dilatometry KW - High strength stells KW - CCT diagrams KW - Heat affected zone PY - 2017 AN - OPUS4-39437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Gerwien, Peter A1 - Kucharczyk, P. A1 - Münstermann, S. A1 - Schork, B. T1 - Fracture-mechanics-based prediction of the fatigue strength of weldments. Material aspects N2 - Any fracture mechanics based determination of the fatigue strength of weldments requires different input information such as the local weld geometry and material data of the areas the crack is passing through during its propagation. The latter is so far not a trivial task as the fatigue crack is usually initiated at the weld toe at the transition from the weld metal to the heat affected zone and it subsequently propagates through the different microstructures of the latter to eventually grow into the base material and to cause final fracture. This paper describes how the material input information has gained particularly for heat affected zone material by thermo-mechanically simulated material specimens for two steels of quite different static strength. The data comprise the cyclic stress-strain curve, the crack closure effect-corrected crack growth characteristics, long crack fatigue crack propagation thresholds, the dependency of the parameter on the crack length and monotonic fracture resistance. The substantial experimental effort was necessary for the validation exercises of the IBESS approach, however, within the scope of practical application more easily applicable estimating methods are required. For that purpose the paper provides a number of appropriate proposals in line with its check against the reference data from the elaborate analyses. KW - Heat affected zone KW - Cyclic stress-strain curve KW - Fatigue crack propagation KW - Fatigue crack propagation threshold KW - Fracture resistance PY - 2018 U6 - https://doi.org/10.1016/j.engfracmech.2017.09.010 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 79 EP - 102 PB - Elsevier AN - OPUS4-46854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -