TY - JOUR A1 - Krietsch, Arne A1 - Reyes Rodriguez, M. A1 - Kristen, A. A1 - Kadoke, D. A1 - Abbas, Z. A1 - Krause, U. T1 - Ignition temperatures and flame velocities of metallic nanomaterials N2 - The production of materials with dimensions in the nanometre range has continued to increase in recent years. In order to ensure safety when handling these products, the hazard potential of such innovative materials must be known. While several studies have already investigated the effects of explosions (such as maximum explosion pressure and maximum pressure rise) of powders with primary particles in the nanometre range, little is known about the ignition temperatures and flame velocities. Therefore, the minimum ignition temperature (MIT) of metallic nano powders (aluminium, iron, copper and zinc) was determined experimentally in a so called Godbert-Greenwald (GG) oven. Furthermore, the flame velocities were determined in a vertical tube. In order to better classify the test results, the tested samples were characterised in detail and the lower explosion limits of the tested dust samples were determined. Values for the burning velocity of aluminium nano powders are higher compared to values of micrometre powd ers (from literature). While MIT of nanometre aluminium powders is within the range of micrometre samples, MIT of zinc and copper nano powders is lower than values reported in literature for respective micrometre samples. KW - Dust explosions KW - Nanomaterial KW - Flame propagation KW - Minimum ignition temperature PY - 2021 U6 - https://doi.org/10.1016/j.jlp.2021.104482 SN - 0950-4230 VL - 2021 IS - 71 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-54076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krietsch, Arne A1 - Reyes Rodriguez, M. A1 - Kristen, A. A1 - Kadoke, D. A1 - Abbas, Z. A1 - Krause, U. T1 - Ignition temperatures and flame velocities of metallic nanomaterials N2 - The production of materials with dimensions in the nanometre range has continued to increase in recent years. In order to ensure safety when handling these products, the hazard potential of such innovative materials must be known. While several studies have already investigated the effects of explosions (such as maximum explosion pressure and maximum pressure rise) of powders with primary particles in the nanometre range, little is known about the ignition temperatures and flame velocities. Therefore, the minimum ignition temperature (MIT) of metallic nano powders (aluminium, iron, copper and zinc) was determined experimentally in a so called Godbert-Greenwald (GG) oven. Furthermore, the flame velocities were determined in a vertical tube. In order to better classify the test results, the tested samples were characterised in detail and the lower explosion limits of the tested dust samples were determined. Values for the burning velocity of aluminium nano powders are higher compared to values of micrometre powders (from literature). While MIT of nanometre aluminium powders is within the range of micrometre samples, MIT of zinc and copper nano powders is lower than values reported in literature for respective micrometre samples. T2 - 13th Symposium International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Online meeting DA - 27.07.2021 KW - Dust explosions KW - Nanomaterial KW - Flame propagation KW - Minimum ignition temperature PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-540930 SP - 591 EP - 605 PB - Physikalisch-Technische Bundesanstalt AN - OPUS4-54093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -