TY - CONF A1 - Miccoli, Lorenzo T1 - In-plane behaviour of earthen materials: a numerical comparison between adobe masonry, rammed earth and cob N2 - The paper presents a comparison between different numerical modelling ap-proaches aiming to simulate the in-plain behaviour of three types of earthen materials, name-ly adobe masonry, rammed earth and cob. For this purpose, uniaxial and diagonal compression tests were carried out, which allowed determining important mechanical param-eters, such as compressive strength, Young’s modulus, Poisson’s ratio, shear strength and shear modulus. Furthermore, the tests allowed assessing the level of non-linear behaviour of the respective stress–strain relationships as well as the failure modes. The experimental results were then used for the calibration of numerical models (based on the finite element method) for simulating the non-linear behaviour of the earth materials under in-plane shear loading. Both macro- and micro-modelling approaches were considered for this purpose. The procedures adopted for model calibration established the reliability of various modelling strategies for the different loading conditions. The simplified approach based on macro-modelling shows a satisfactory accuracy and low computational costs. The results reproduc-ing the uniaxial compression are in good correspondence with the post-elastic behaviour ob-served in the experimental campaign. The micro-modelling approach adopted to reproduce the shear behaviour, even with higher computational cost, represents a suitable tool to pre-dict the adobe masonry and rammed earth collapse mechanisms T2 - 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2017) CY - Rhodes Island, Greece DA - 15.06.2017 KW - Earthen Materials KW - Compression Behaviour KW - Shear Behaviour KW - Digital Image Correlation KW - Finite Element Method PY - 2017 AN - OPUS4-41280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Assessing the predictive capability of numerical additive manufacturing simulations via in-situ distortion measurements on a LMD component during build-up N2 - Due to rapid, localized heating and cooling, distortions accumulate in additive manufactured laser metal deposition (LMD) components, leading to a loss of dimensional accuracy or even cracking. Numerical welding simulations allow the prediction of these deviations and their optimization before conducting experiments. To assess the viability of the simulation tool for the use in a predictive manner, comprehensive systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to Cluster these products in new assembly oriented product families for the optimization. KW - Laser metal deposition KW - Directed Energy Deposition KW - DED KW - Welding Simulation KW - Digital Image Correlation KW - Cimensional Accuracy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502567 DO - https://doi.org/10.1016/j.procir.2018.08.069 VL - 74 SP - 158 EP - 162 PB - Elsevier AN - OPUS4-50256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Singh, Shobhit T1 - Accelerated Creep Testing in High- Temperature Alloys N2 - This study introduces an innovative method for efficiently determining the creep properties of high-temperature materials through high-throughput testing, employing digital image correlation [1,2]. The focus is on the AlCoCrFeNiTi alloy [3-5], synthesized by directional solidification, known for its exceptional strength and unique properties. Experimental investigations, including compression, and bending creep tests, were conducted at 750°C. Capitalizing on the inhomogeneous stress and strain distribution within a cantilever subjected to bending, we leverage this characteristic to extract multiple creep curves from a single test. Stresses at key points were determined using existing analytical solutions [5,6]. Uniaxial tests spanning 300 to 500 MPa initial stress were complemented by bending tests designed to induce similar stress levels. A detailed comparison between bending and uniaxial creep is presented, including the results of verification studies on additional alloys. This methodology not only expedites testing but also minimizes material usage, energy consumption, and manual labour. This research showcases a reliable and time-efficient approach to exploring the creep behavior of high-temperature materials. The technique is particularly advantageous for characterizing precious alloys with limited dimensions. Microstructural heterogeneity may exist in specimens tested under bending load, however, it can still be correlated to the mechanical properties with modern high-resolution characterization methods. Stress and resulting strain can be directly compared in a single specimen, ensuring uniform manufacturing, and heating history. This method eliminates the possible errors due to testing with different rigs, which could impair the accuracy of studies based on individual tests. T2 - International Conference on Creep and Fracture of Engineering Materials and Structures CY - Bengaluru, KA, India DA - 28.07.2024 KW - Digital Image Correlation KW - Creep KW - High-Temperature Materials PY - 2024 AN - OPUS4-60925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -