TY - JOUR A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Assessing the predictive capability of numerical additive manufacturing simulations via in-situ distortion measurements on a LMD component during build-up N2 - Due to rapid, localized heating and cooling, distortions accumulate in additive manufactured laser metal deposition (LMD) components, leading to a loss of dimensional accuracy or even cracking. Numerical welding simulations allow the prediction of these deviations and their optimization before conducting experiments. To assess the viability of the simulation tool for the use in a predictive manner, comprehensive systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to Cluster these products in new assembly oriented product families for the optimization. KW - Laser metal deposition KW - Directed Energy Deposition KW - DED KW - Welding Simulation KW - Digital Image Correlation KW - Cimensional Accuracy PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-502567 VL - 74 SP - 158 EP - 162 PB - Elsevier AN - OPUS4-50256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Silva, R. A. A1 - Garofano, A. A1 - Oliveira, D. V. T1 - In-plane behaviour of earthen materials: a numerical comparison between adobe masonry, rammed earth and cob N2 - The paper presents a comparison between different numerical modelling ap-proaches aiming to simulate the in-plain behaviour of three types of earthen materials, name-ly adobe masonry, rammed earth and cob. For this purpose, uniaxial and diagonal compression tests were carried out, which allowed determining important mechanical param-eters, such as compressive strength, Young’s modulus, Poisson’s ratio, shear strength and shear modulus. Furthermore, the tests allowed assessing the level of non-linear behaviour of the respective stress–strain relationships as well as the failure modes. The experimental results were then used for the calibration of numerical models (based on the finite element method) for simulating the non-linear behaviour of the earth materials under in-plane shear loading. Both macro- and micro-modelling approaches were considered for this purpose. The procedures adopted for model calibration established the reliability of various modelling strategies for the different loading conditions. The simplified approach based on macro-modelling shows a satisfactory accuracy and low computational costs. The results reproduc-ing the uniaxial compression are in good correspondence with the post-elastic behaviour ob-served in the experimental campaign. The micro-modelling approach adopted to reproduce the shear behaviour, even with higher computational cost, represents a suitable tool to pre-dict the adobe masonry and rammed earth collapse mechanisms T2 - 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2017) CY - Rhodes Island, Greece DA - 15.06.2017 KW - Earthen Materials KW - Compression Behaviour KW - Shear Behaviour KW - Digital Image Correlation KW - Finite Element Method PY - 2017 AN - OPUS4-41280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -