TY - CONF A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Putra, Stephen Nugraha A1 - Rethmeier, Michael T1 - Numerical analysis of the influence of an auxiliary oscillating magnetic field on suppressing the porosity formation in deep penetration laser beam welding of aluminum alloys N2 - The contactless magnetohydrodynamic technology has been considered as a potential and promising method to improve the weld qualities of deep penetration laser beam welding. In this paper, numerical investigations are conducted to study the influence of the auxiliary oscillating magnetic field on the porosity suppression in laser beam welding of 5754 aluminum alloy. To obtain a deeper insight into the suppression mechanism, a three-dimensional transient multi-physical model is developed to calculate the heat transfer, fluid flow, keyhole dynamic, and magnetohydrodynamics. A ray tracing algorithm is employed to calculate the laser energy distribution on the keyhole wall. A time-averaged downward Lorentz force is produced by an oscillating magnetic field. This force acts in the molten pool, leading to a dominant downward flow motion in the longitudinal section, which blocks the bubble migration from the keyhole tip to the rear part of the molten pool. Therefore, the possibility for the bubbles to be captured by the solidification front is reduced. The electromagnetic expulsive force provides an additional upward escaping speed for the bubbles of 1 m/s ~ 5 m/s in the lower and middle region of the molten pool. The simulation results are in a good agreement with experimental measurements. Based on the results obtained in this study, a better understanding of the underlying physics in laser beam welding enhanced by an auxiliary oscillating magnetic field can be provided and thus the welding process can be further optimized reducing the porosity formation. T2 - The 13th International Seminar "Numerical Analysis of Weldability" CY - Graz, Austria DA - 04.09.2022 KW - Deep penetration laser beam welding KW - Oscillating magnetic field KW - Numerical simulation KW - Porosity KW - Molten pool behaviour PY - 2022 AN - OPUS4-56328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Mathematical analysis of the bulging effect in high power laser beam welding of thick steel sheets N2 - The present work is devoted to the mathematical analysis of the bulging effect in high-power laser beam welding of thick steel sheets. The numerical results are based upon experimental results from previous studies, revealing the relationships between the bulging effect, the hot cracking formation, and the distribution of alloying elements in the weld pool. The widening of the molten pool in its middle area is observed for both complete and partial penetration welding of 8 mm - 15 mm thick structural steel sheets. The weld pool shape is extracted from the simulations to evaluate the extent of the necking and bulging of the solidification isotherm and their influence on the hot cracking formation and the mixing behavior of the weld pool. Relying on an earlier numerical study utilizing a fixed keyhole, simulation models considering a dynamic keyhole are developed thereto. The link between the bulge and the studied phenomena is found to be significant. T2 - Beam Technologies & Laser Applications CY - Saint Petersburg, Russia DA - 20.09.2021 KW - Deep penetration laser beam welding KW - Bulge effect KW - Numerical modelling KW - Hot cracking KW - Necking KW - Mixing behavior PY - 2021 AN - OPUS4-53375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study of the bulging effect in deep penetration laser beam welding N2 - This article is devoted to the study of the bulging effect in deep penetration laser beam welding. The numerical results of the investigations are based upon experimental results from previous studies to reveal the relationship between the bulging effect and the hot cracking formation, as well as the mixing of alloying elements in the weld pool. The widening of the molten pool in its center area can be observed in full penetration as well as in partial penetration welds on 8 mm and 12 mm thick structural steel plates, respectively. The weld pool shape is extracted from the simulations to evaluate the extent of the necking of the solidification line as well as the bulging phenomena and its influence on the hot cracking phenomena. Relying on an earlier numerical study utilizing a fixed keyhole, simulation models considering a dynamic keyhole are developed thereto. Additionally, the mixing behavior of alloying elements during partial penetration is investigated. The link between the bulge and the studied phenomena is found to be significant. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Deep penetration laser beam welding KW - Welding simulation KW - Solidification cracking KW - Bulging effect PY - 2021 AN - OPUS4-52847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical analysis of the effect of an oscillating metal vapor plume on the keyhole and molten pool behavior during deep penetration laser beam welding N2 - The effect of the oscillating metal vapor plume on the keyhole and molten pool behavior during the laser beam welding of AlMg3 aluminum alloys is investigated by experimental and numerical methods. The real-time height of the metal vapor plume is measured by high-speed camera observation. The obtained experimental results are used to evaluate the additional heating source and laser beam attenuation caused by the scattering and absorption based on the Beer–Lambert theory. Furthermore, the dynamic behavior of the metal vapor plume is incorporated into a 3D transient heat transfer and fluid flow model, coupled with the ray tracing method, for the laser beam welding of the AlMg3 alloy. It is found that additional heating resulting from the scattered and absorbed laser beam energy by the metal vapor plume significantly expands the shape of the molten pool on the top region. Moreover, the oscillating metal vapor plume caused the fluctuation of the high-temperature region in the molten pool. The probability of keyhole collapse at the bottom increases 17% due to the oscillating laser power induced by the laser beam attenuation. The internal interplay between the metal vapor plume, molten pool shape, and keyhole collapse is obtained. The developed model has been validated by experiments, which shows a good agreement. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Deep penetration laser beam welding KW - Numerical simulation KW - Oscillating vapor plume KW - Keyhole collapse PY - 2023 AN - OPUS4-58794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Experimental and numerical investigations of suppression mechanism of an oscillating magnetic field on process porosity during laser beam welding N2 - Magnetohydrodynamic technology is increasingly recognized as a promising approach for enhancing the quality of deep penetration laser beam welding. This study employs experimental and numerical methods to investigate the effects of an auxiliary oscillating magnetic field on reducing porosity in the laser beam welding of 5754 aluminum alloy. The experimental results clearly demonstrate a significant reduction in the porosity ratio, thereby validating the efficacy of applying MHD technology in mitigating porosity during the laser beam welding process. In addition, a transient 3D multi-physical model has been developed, integrating the magnetohydrodynamic and metal vapor plume, to gain a more comprehensive understanding of the porosity suppression mechanism. The introduction of an oscillating magnetic field generates a time-averaged downward Lorentz force. This Lorentz force, in turn, induces an electromagnetic expulsive force, which effectively increases the upward escape velocity of bubbles in the molten pool. Furthermore, the molten pool shape is significantly enlarged, which further facilitate the escape of bubbles. The simulation results agree well with the experimental results. T2 - Assistentenseminar der WGF (Wissenschaftliche Gesellschaft Fügetechnik e.V. im DVS) CY - Päwesin, Germany DA - 20.09.2023 KW - Deep penetration laser beam welding KW - Oscillating magnetic field KW - Numerical simulation KW - Porosity PY - 2023 AN - OPUS4-58796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -