TY - JOUR A1 - Sattari, S. A1 - Beyranvand, S. A1 - Soleimani, K. A1 - Rassoli, K. A1 - Salahi, P. A1 - Donskyi, Ievgen A1 - Shams, A. A1 - Unger, Wolfgang A1 - Yari, A. A1 - Farjanikish, G. A1 - Nayebzadeh, H. A1 - Adeli, M. T1 - Boronic Acid-Functionalized Two-Dimensional MoS2 at Biointerfaces N2 - While noncovalent interactions at two-dimensional nanobiointerfaces are extensively investigated, less knowledge about covalent interactions at this interface is available. In this work, boronic acid-functionalized 2D MoS2 was synthesized and its covalent multivalent interactions with bacteria and nematodes were investigated. Polymerization of glycidol by freshly exfoliated MoS2 and condensation of 2,5-thiophenediylbisboronic acid on the produced platform resulted in boronic acid-functionalized 2D MoS2. The destructive interactions between 2D MoS2 and bacteria as well as nematodes were significantly amplified by boronic acid functional groups. Because of the high antibacterial and antinematodal activities of boronic acid-functionalized 2D MoS2, its therapeutic efficacy for diabetic wound healing was investigated. The infected diabetic wounds were completely healed 10 days after treatment with boronic acid-functionalized 2D MoS2, and a normal structure for recovered tissues including different layers of skin, collagen, and blood vessels was detected. KW - XPS KW - Boronic acid-functionalized 2D MoS2 KW - Covalent interactions KW - Bacteria KW - Nanobiointerfaces PY - 2020 U6 - https://doi.org/10.1021/acs.langmuir.0c00776 VL - 36 IS - 24 SP - 6706 EP - 6715 PB - ACS American Chemical Society AN - OPUS4-51024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -